Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Saliency Detection Model for Low Contrast Images Based on Amplitude Spectrum Analysis and Superpixel Segmentation

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 682))

  • 1145 Accesses

Abstract

Traditional saliency detection models face great challenges towards low contrast images with low signal-to-noise ratio property. In this circumstance, it is difficult to extract effective visual features to describe salient information in image. This paper proposes a saliency detection model for low contrast images utilizing efficient features both from frequency domain and spatial domain. The input image is firstly transformed into frequency domain to calculate the amplitude spectrum by a median filter, aiming to suppress the information from non-salient regions. Then, a superpixel based feature extraction method is utilized to generate saliency map via both local and global spatial information. Experiments are carried on the low contrast image dataset to demonstrate the effectiveness of the proposed saliency detection model over other eight state-of-the-art saliency models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  2. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2006)

    Google Scholar 

  3. Chen, S., Shi, W., Zhang, W.: Visual saliency detection via multiple background estimation and spatial distribution. Optik-Int. J. Light Electron Opt. 125(1), 569–574 (2014)

    Article  Google Scholar 

  4. Wang, X., Ning, C., Xu, L.: Saliency detection using mutual consistency-guided spatial cues combination. Infrared Phys. Technol. 72, 106–116 (2015)

    Article  Google Scholar 

  5. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  6. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)

    Google Scholar 

  7. Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  8. Chen, Z., Wang, X., Sun, Z., Wang, Z.: Motion saliency detection using a temporal fourier transform. Opt. Laser Technol. 80, 1–15 (2016)

    Article  Google Scholar 

  9. Sun, X., Zhu, Z., Liu, X., Shang, Y., Yu, Q.: Frequency-spatial domain based salient region detection. Optik-Int. J. Light Electron Opt. 126(9–10), 942–949 (2015)

    Article  Google Scholar 

  10. Chen, D., Jia, T., Wu, C.: Visual saliency detection: from space to frequency. Signal Process. Image Commun. 44, 57–68 (2016)

    Article  Google Scholar 

  11. Mu, N., Xu, X., Chen, L., Tian, J.: Block-based salient region detection using a new spatial-spectral-domain contrast measure. In: IEEE International Symposium on Multimedia, pp. 86–89 (2014)

    Google Scholar 

  12. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  13. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 433–440 (2011)

    Google Scholar 

  14. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  15. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139–1146 (2013)

    Google Scholar 

  16. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)

    Google Scholar 

  17. Tong, N., Lu, H., Yang, M.: Salient object detection via bootstrap learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1884–1892 (2015)

    Google Scholar 

  18. Zhang, J., Wang, M., Zhang, S., Li, X., Wu, X.: Spatiochromatic context modeling for color saliency analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1177–1189 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (61602349, 61373109, 61403287, 61602350 and 61273225) and the China Scholarship Council (201508420248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Yang, H., Xu, X., Mu, N. (2016). Saliency Detection Model for Low Contrast Images Based on Amplitude Spectrum Analysis and Superpixel Segmentation. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 682. Springer, Singapore. https://doi.org/10.1007/978-981-10-3614-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3614-9_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3613-2

  • Online ISBN: 978-981-10-3614-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics