Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Face Feature Points Detection Based on Adaboost and AAM

  • Conference paper
  • First Online:
Geo-Spatial Knowledge and Intelligence (GRMSE 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 698))

Abstract

Face detection is a classical problem in the field of computer vision. It is widely used in recent years, face detection and face tracking has not only limited to the scope of application of face recognition: in video retrieval, video surveillance, facial expression analysis, gender, race, age discrimination, digital entertainment, and so on. This paper proposed algorithm based on AdaBoost algorithm AAM model of face feature points to identify the improvement in a certain range to solve the present stage AAM algorithm does not consider the grayscale in the exact face of initial position and face face detection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sirohey, S.A.: Human face segmentation and identification. Technical Report, CS-TR-3176, University of Maryland, Maryland (1993)

    Google Scholar 

  2. Augusteijn, M.F., Skujca, T.L.: Identification of human faces through texture-based feature recognition and neural network technology. In: Proceeding of the IEEE Conference on Neural Networks, pp. 392–398. IEEE (1993)

    Google Scholar 

  3. Yang, G., Huang, T.S.: Human face detection in complex background. Pattern Recogn. 27(1), 53–63 (1994)

    Article  MathSciNet  Google Scholar 

  4. Heiseleu, B., Serret, T., Pontils, M., Poggiot, T.: Component-based face detection. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–662. IEEE Computer Society Press (2001)

    Google Scholar 

  5. Lanitis, A., Taylor, C.J., Cootes, T.F.: An automatic face identification system using flexible appearance models. Image Vis. Comput. 13(5), 393–401 (1995)

    Article  Google Scholar 

  6. Kass, M., Witkin, A., Terzopoulous, D.: Snake: active contour models. In: Proceedings of the 1st International Conference on Computer Vision, pp. 259–268. IEEE Computer Society Press, London (1987)

    Google Scholar 

  7. Cootes, T.F., Taylar, C.J., Cooper, D.H., et al.: Active shape models their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1994)

    Article  Google Scholar 

  8. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). doi:10.1007/BFb0054760

    Google Scholar 

  9. Viola, P., Jones, M.: Rapid object detection using a boosted casecade of simple features. In: Proceedings IEEE on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, pp. 511–518 (2001)

    Google Scholar 

  10. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38 (1998)

    Article  Google Scholar 

  11. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 130–136. IEEE Computer Society Press (1997)

    Google Scholar 

  12. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. I-511–I-518. IEEE Computer Society Press (2001)

    Google Scholar 

  13. Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 236–243. IEEE Computer Society Press (2005)

    Google Scholar 

  14. Liao, SC., Zhu, XX., Lei, Z., Zhang, L., Li, SZ.: Learning multi-scale block local binary patterns for face recognition. In: Proceeding of the International Conference on Biometrics, pp. 828–837. IEEE (2007)

    Google Scholar 

  15. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: Discriminative sparse image models for class-specific edge detection and image interpretation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 43–56. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_4

    Chapter  Google Scholar 

  16. Song, H.O., et al.: Sparselet models for efficient multiclass object detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision–ECCV 2012. LNCS, vol. 7573, pp. 802–815. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_57

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqi Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Jia, X., Zhu, Q., Zhang, P., Chang, M. (2017). Face Feature Points Detection Based on Adaboost and AAM. In: Yuan, H., Geng, J., Bian, F. (eds) Geo-Spatial Knowledge and Intelligence. GRMSE 2016. Communications in Computer and Information Science, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-10-3966-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3966-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3965-2

  • Online ISBN: 978-981-10-3966-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics