Abstract
Face detection is a classical problem in the field of computer vision. It is widely used in recent years, face detection and face tracking has not only limited to the scope of application of face recognition: in video retrieval, video surveillance, facial expression analysis, gender, race, age discrimination, digital entertainment, and so on. This paper proposed algorithm based on AdaBoost algorithm AAM model of face feature points to identify the improvement in a certain range to solve the present stage AAM algorithm does not consider the grayscale in the exact face of initial position and face face detection problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sirohey, S.A.: Human face segmentation and identification. Technical Report, CS-TR-3176, University of Maryland, Maryland (1993)
Augusteijn, M.F., Skujca, T.L.: Identification of human faces through texture-based feature recognition and neural network technology. In: Proceeding of the IEEE Conference on Neural Networks, pp. 392–398. IEEE (1993)
Yang, G., Huang, T.S.: Human face detection in complex background. Pattern Recogn. 27(1), 53–63 (1994)
Heiseleu, B., Serret, T., Pontils, M., Poggiot, T.: Component-based face detection. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–662. IEEE Computer Society Press (2001)
Lanitis, A., Taylor, C.J., Cootes, T.F.: An automatic face identification system using flexible appearance models. Image Vis. Comput. 13(5), 393–401 (1995)
Kass, M., Witkin, A., Terzopoulous, D.: Snake: active contour models. In: Proceedings of the 1st International Conference on Computer Vision, pp. 259–268. IEEE Computer Society Press, London (1987)
Cootes, T.F., Taylar, C.J., Cooper, D.H., et al.: Active shape models their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1994)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). doi:10.1007/BFb0054760
Viola, P., Jones, M.: Rapid object detection using a boosted casecade of simple features. In: Proceedings IEEE on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, pp. 511–518 (2001)
Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38 (1998)
Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 130–136. IEEE Computer Society Press (1997)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. I-511–I-518. IEEE Computer Society Press (2001)
Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 236–243. IEEE Computer Society Press (2005)
Liao, SC., Zhu, XX., Lei, Z., Zhang, L., Li, SZ.: Learning multi-scale block local binary patterns for face recognition. In: Proceeding of the International Conference on Biometrics, pp. 828–837. IEEE (2007)
Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: Discriminative sparse image models for class-specific edge detection and image interpretation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 43–56. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_4
Song, H.O., et al.: Sparselet models for efficient multiclass object detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision–ECCV 2012. LNCS, vol. 7573, pp. 802–815. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_57
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jia, X., Zhu, Q., Zhang, P., Chang, M. (2017). Face Feature Points Detection Based on Adaboost and AAM. In: Yuan, H., Geng, J., Bian, F. (eds) Geo-Spatial Knowledge and Intelligence. GRMSE 2016. Communications in Computer and Information Science, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-10-3966-9_15
Download citation
DOI: https://doi.org/10.1007/978-981-10-3966-9_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3965-2
Online ISBN: 978-981-10-3966-9
eBook Packages: Computer ScienceComputer Science (R0)