Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hyperspectral Image Denoising Based on Subspace Low Rank Representation

  • Conference paper
  • First Online:
Geo-Spatial Knowledge and Intelligence (GRMSE 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 699))

Abstract

Hyperspectral images (HSIs) are often degraded by different kinds of noises. Low rank (LR)-based methods have achieved great performance in HSI denoising problem. However, the LR-based methods only consider the rank of the whole spectral space, conducting no constraints on the intrinsic structure within the LR space. In fact, the spectral vectors can be classified into different categories based on the land-covers. As a result, the spectral space can be modelled as a union of multiple LR subspaces. Regarding this structure, we introduce the framework of subspace low rank (SLR) representation into HSI denoising problem and propose a novel SLR-based denoising method for HSIs. Experiments conducted on both simulated and real data show that our method achieves great improvement over the state-of-art methods qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Article  MATH  Google Scholar 

  2. Othman, H., Qian, S.E.: Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 44(2), 397–408 (2006)

    Article  Google Scholar 

  3. Zhang, H.: Hyperspectral image denoising with cubic total variation Model. ISPRS Ann. photogramm. Remote Sens. Spat. Inf. Sci. 7, 95–98 (2012)

    Article  Google Scholar 

  4. Yuan, Q., Zhang, L., Shen, H.: Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE Trans. Geosci. Remote Sens. 50(10), 3660–3677 (2012)

    Article  Google Scholar 

  5. Renard, N., Bourennane, S., Blanc-Talon, J.: Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 5(2), 138–142 (2008)

    Article  Google Scholar 

  6. Zhang, H., He, W., Zhang, L., Shen, H., Yuan, Q.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52(8), 4729–4743 (2014)

    Article  Google Scholar 

  7. Wang, M., Yu, J., Sun, W.: Group-based hyperspectral image denoising using low rank representation. In: IEEE Processing of the ICIP, pp. 1623–1627 (2015)

    Google Scholar 

  8. Qian, Y., Ye, M.: Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(2), 499–515 (2013)

    Article  Google Scholar 

  9. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  10. Favaro, P., Vidal, R., Ravichandran, A.: A closed form solution to robust subspace estimation and clustering. In: Processing of the IEEE Conference on Computer Vision Pattern Recognition, pp. 1801–1807, June 2011

    Google Scholar 

  11. Lang, C., Liu, G., Yu, J., Yan, S.: Saliency detection by multitask sparsity pursuit. IEEE Trans. Image Process. 21(3), 1327–1338 (2012)

    Article  MathSciNet  Google Scholar 

  12. Cheng, B., Liu, G., Wang, J., Huang, Z., Yan, S.: Multi-task low-rank affinity pursuit for image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2439–2446, November 2011

    Google Scholar 

  13. Huang, H., Christodoulou, A.G., Sun, W.: Super-resolution hyperspectral imaging with unknown blurring by low-rank and group-sparse modeling. In: Proceedings of the ICIP IEEE, pp. 2155–2159 (2014)

    Google Scholar 

  14. Iordache, M.D., Bioucas-Dias, J.M., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(6), 2014–2039 (2011)

    Article  Google Scholar 

  15. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055

  16. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Nature Science Foundation (No. 61171117) and the Capital Health Research and Development of Special (No. 2014-2-4025) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengdi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, M., Yu, J., Niu, L., Sun, W. (2017). Hyperspectral Image Denoising Based on Subspace Low Rank Representation. In: Yuan, H., Geng, J., Bian, F. (eds) Geo-Spatial Knowledge and Intelligence. GRMSE 2016. Communications in Computer and Information Science, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-10-3969-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3969-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3968-3

  • Online ISBN: 978-981-10-3969-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics