Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Accurate Calibration Method of a Multi Camera System

  • Conference paper
  • First Online:
Advanced Computational Methods in Life System Modeling and Simulation (ICSEE 2017, LSMS 2017)

Abstract

In this paper, we proposed a novel method of geometric calibration and synchronization for a multi camera system. Traditional calibration methods of visible cameras can’t be applied to thermal cameras. According to the imaging characteristics of thermal cameras, we designed a new calibration board using materials with different emissivity for calibration. Our calibration board can accurately calibrate RGBD cameras and thermal cameras. In general, thermal cameras have regular non-uniformity corrections, which will result in camera interruption about 1.5 to 2 s and can impact synchronization. In this respect, we adopted the method named nearest adjacent time using timestamp to solve the problem of non-uniformity corrections and synchronization. We evaluated our methods and the experiments showed that our methods had an ideal result for camera calibration and synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zennaro, S., Munaro, M., Milani, S., Zanuttigh, P., Bernardi, A., Ghidoni, S., et al.: Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications. In: International Conference on Multimedia and Expo, pp. 1–6. IEEE, Turin (2015)

    Google Scholar 

  2. Butkiewicz, T.: Low-cost coastal mapping using Kinect v2 time-of-flight cameras. In: Oceans, pp. 1–9. IEEE, St. John’s (2015)

    Google Scholar 

  3. Gonzalez-Jorge, H., Rodríguez-Gonzálvez, P., Martínez-Sánchez, J., González-Aguilera, D., Arias, P., Gesto, M., et al.: Metrological comparison between kinect I and kinect II sensors. Measurement 70, 21–26 (2015)

    Article  Google Scholar 

  4. Corti, A., Giancola, S., Mainetti, G., Sala, R.: A metrological characterization of the Kinect V2 time-of-flight camera. Robot. Auton. Syst. 75(8), 584–594 (2015)

    Google Scholar 

  5. Lachat, E., Macher, H., Landes, T., Grussenmeyer, P.: Assessment and calibration of a RGB-D camera (Kinect v2 Sensor) towards a potential use for close-range 3D modeling. Remote Sens. 7(10), 13070–13097 (2015)

    Article  Google Scholar 

  6. Moghadam, P., Vidas, S., Lam, O.: Spectra: 3D multispectral fusion and visualization toolkit. In: Australasian Conference on Robotics and Automation. ACRA, Melbourne (2014)

    Google Scholar 

  7. Borrmann, D., Nüchter, A., Djakulovi’C, M., Maurovi’C, I., Petrovi’C, I., Osmankovi’C, D., et al.: The Project thermalmapper-thermal 3D mapping of indoor environments for saving energy. Ifac Symp. Robot. Control 45(22), 31–38 (2012)

    Google Scholar 

  8. Nauer, C., Vonach, E., Gerstweiler, G., Kaufmann, H.: 3D building reconstruction and thermal mapping in fire brigade operations. In: Augmented Human International Conference, pp. 1–2. IEEE, Lake Buena Vista (2013)

    Google Scholar 

  9. Borrmanna, D., Nüchtera, A., Ðakulovic, M., Maurovic, I., Petrovic, I., Osmankovic, O., et al.: A mobile robot based system for fully automated thermal 3D mapping. Adv. Eng. Inform. 28(4), 425–440 (2014)

    Article  Google Scholar 

  10. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  11. Vidas, S., Moghadam, P., and Bosse, M. (2013).: 3D thermal mapping of building interiors using an RGB-D and thermal camera. In: International Conference on Robotics and Automation, pp. 2311–2318. IEEE, Karlsruhe (2013)

    Google Scholar 

  12. Lussier, J. T., Thrun, S.: Automatic calibration of RGBD and thermal cameras. In: International Conference on Intelligent Robots and Systems, pp. 451–458. IEEE, Chicago (2014)

    Google Scholar 

  13. Skala, K., Lipić, T., Sović, I., Gjenero, L., Grubišić, I.: 4D thermal imaging system for medical applications. Periodicum Biologorum 113(4), 407–416 (2011)

    Google Scholar 

  14. Ham, Y., Golparvar-Fard, M.: An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery. Adv. Eng. Inform. 27(3), 395–409 (2013)

    Article  Google Scholar 

  15. Kim, N., Choi, Y., Hwang, S., Park, K.: Geometrical calibration of multispectral calibration. In: International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 384–385. IEEE, Goyang (2015)

    Google Scholar 

  16. Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W.: Infrared camera calibration for dense depth map construction. In: Intelligent Vehicles Symposium, pp. 857–862. IEEE, Baden-Baden (2011)

    Google Scholar 

  17. St-Laurent, L., Prévost, D., Maldague, X.: Fast and accurate calibration-based thermal/color sensors registration. In: 10th International Conference on Quantitative Infrared Thermography, QIRT, Québec, Canada, pp. 27–30 (2010)

    Google Scholar 

  18. Hwang, S., Choi, Y., Kim, N., Park, K.: Low-cost synchronization for multispectral cameras. In: International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 435–436. IEEE, Goyang (2015)

    Google Scholar 

  19. Baar, J.V., Beardsley, P., Pollefeys, M., Gross, M.: Sensor fusion for depth estimation, including TOF and thermal sensors. In: 2nd International Conference on 3d Imaging, Modeling, Processing, Visualization and Transmission, pp. 472–478. IEEE, Zurich (2012)

    Google Scholar 

  20. Miller, S., Teichman, A., Thrun, S.: Unsupervised extrinsic calibration of depth sensors in dynamic scenes. In: Intelligent Robots and Systems, pp. 2695–2702. IEEE, Tokyo (2013)

    Google Scholar 

  21. Datta, A., Kim, J.S., Kanade, T.: Accurate camera calibration using iterative refinement of control points. In: 12th Computer Vision Workshops, pp. 1201–1208. IEEE, Kyoto (2009)

    Google Scholar 

  22. Bahnsen, C.: Thermal-visible-depth image registration (2017). http://projekter.aau.dk/projekter/en/studentthesis/termiskvisueldybde-billedregistering(8564c183-bdc1-4a9c-8bda-c71878cb0814).html

Download references

Acknowledgments

This work is supported by National Nature Science Foundation under Grant No. 61573144, 61502293 and 61205017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingsheng Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Han, S., Gu, X., Gu, X. (2017). An Accurate Calibration Method of a Multi Camera System. In: Fei, M., Ma, S., Li, X., Sun, X., Jia, L., Su, Z. (eds) Advanced Computational Methods in Life System Modeling and Simulation. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 761. Springer, Singapore. https://doi.org/10.1007/978-981-10-6370-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6370-1_49

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6369-5

  • Online ISBN: 978-981-10-6370-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics