Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integrated Classifier: A Tool for Microarray Analysis

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

Microarray technology has been developed and applied in different biological context, especially for the purpose of monitoring the expression levels of thousands of genes simultaneously. In this regard, analysis of such data requires sophisticated computational tools. Hence, we confined ourselves to propose a tool for the analysis of microarray data. For this purpose, a feature selection scheme is integrated with the classical supervised classifiers like Support Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes, separately to improve the classification performance, named as Integrated Classifiers. Here feature selection scheme generates bootstrap samples that are used to create diverse and informative features using Principal Component Analysis. Thereafter, such features are multiplied with the original data in order create training and testing data for the classifiers. Final classification results are obtained on test data by computing posterior probability. The performance of the proposed integrated classifiers with respect to their conventional classifiers is demonstrated on 12 microarray datasets. The results show that the integrated classifiers boost the performance up to 25.90% for a dataset, while the average performance gain is 9.74%, over the conventional classifiers. The superiority of the results has also been established through statistical significance test.

S.S. Bhowmick and I. Saha—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338), 680–686 (1997)

    Article  Google Scholar 

  2. Stears, R.L., Martinsky, T., Schena, M., et al.: Trends in microarray analysis. Nat. Med. 9(1), 140–145 (2003)

    Article  Google Scholar 

  3. Valentini, G., Masulli, F.: Ensembles of learning machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–20. Springer, Heidelberg (2002). doi:10.1007/3-540-45808-5_1

    Chapter  Google Scholar 

  4. Mitra, S., Mitra, P., Pal, S.K.: Evolutionary modular design of rough knowledge-based network using fuzzy attributes. Neurocomputing 36, 45–66 (2001)

    Article  MATH  Google Scholar 

  5. Khotanzad, A., Chung, C.: Application of multi-layer perceptron neural networks to vision problems. Neural Comput. Appl. 7(3), 249–259 (1998)

    Article  Google Scholar 

  6. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). doi:10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  7. Jordan, M.I., Jacobs, R.A.: Hierarchical mixture of experts and the EM algorithm. Neural Comput. 6, 181–214 (1994)

    Article  Google Scholar 

  8. Hashem, S.: Optimal linear combination of neural networks. Neural Comput. 10, 519–614 (1997)

    Google Scholar 

  9. Boser, B.E., Guyon, I.M., N.Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  10. Sun, S.: Ensembles of feature subspaces for object detection. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009. LNCS, vol. 5552, pp. 996–1004. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01510-6_113

    Chapter  Google Scholar 

  11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  12. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  13. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41–47 (2002)

    Article  Google Scholar 

  14. Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E.J., Lander, E.S., Wong, W., Johnson, B.E., Golub, T.R., Sugarbaker, D.J., Meyerson, M.: Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. 98(24), 13790–13795 (2001)

    Article  Google Scholar 

  15. Chowdary, D., Lathrop, J., Skelton, J., Curtin, K., Briggs, T., Zhang, Y., Yu, J., Wang, Y., Mazumder, A.: Prognostic gene expression signatures can be measured in tissues collected in rnalater preservative. J. Mol. Diagn. 8(1), 31–39 (2006)

    Article  Google Scholar 

  16. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11, 86–92 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen, J.A.: Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Article  MathSciNet  Google Scholar 

  18. Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, New Jersey (1971)

    MATH  Google Scholar 

  19. Yeung, K.Y., Ruzzo, W.L.: An empirical study on principal component analysis for clustering gene expression data. Bioinformatics 17, 763–774 (2001)

    Article  Google Scholar 

  20. Saha, I., Rak, B., Bhowmick, S.S., Maulik, U., Bhattacharjee, D., Koch, U., Lazniewski, M., Plewczynski, D.: Binding activity prediction of cyclin-dependent inhibitors. J. Chem. Inf. Model. 55(7), 1469–1482 (2015)

    Article  Google Scholar 

  21. Mazzocco, G., Bhowmick, S.S., Saha, I., Maulik, U., Bhattacharjee, D., Plewczynski, D.: MaER: a new ensemble based multiclass classifier for binding activity prediction of HLA Class II proteins. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 462–471. Springer, Cham (2015). doi:10.1007/978-3-319-19941-2_44

    Chapter  Google Scholar 

  22. Bhowmick, S.S., Saha, I., Maulik, U., Bhattacharjee, D.: Identification of miRNA signature using next-generation sequencing data of prostate cancer. In: Proceedings of the 3rd International Conference on Recent Advances in Information Technology, pp. 528–533 (2016)

    Google Scholar 

  23. Lancucki, A., Saha, I., Bhowmick, S.S., Maulik, U., Lipinski, P.: A new evolutionary microRNA marker selection using next-generation sequencing data. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2752–2759 (2016)

    Google Scholar 

  24. Saha, I., Bhowmick, S.S., Geraci, F., Pellegrini, M., Bhattacharjee, D., Maulik, U., Plewczynski, D.: Analysis of next-generation sequencing data of mirna for the prediction of breast cancer. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2015. LNCS, vol. 9873, pp. 116–127. Springer, Cham (2016). doi:10.1007/978-3-319-48959-9_11

    Chapter  Google Scholar 

  25. Bhowmick, S.S., Saha, I., Maulik, U., Bhattacharjee, D.: Biomarker identification using next generation sequencing data of RNA. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 299–303 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Bhowmick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Bhowmick, S.S., Saha, I., Rato, L., Bhattacharjee, D. (2017). Integrated Classifier: A Tool for Microarray Analysis. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer, Singapore. https://doi.org/10.1007/978-981-10-6430-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6430-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6429-6

  • Online ISBN: 978-981-10-6430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics