Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Load Balancing Strategy for Monte Carlo Method in PageRank Problem

  • Conference paper
  • First Online:
Parallel Architecture, Algorithm and Programming (PAAP 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 729))

  • 1390 Accesses

Abstract

PageRank algorithm is key component of a wide range of applications. Former study has demonstrated that PageRank problem can be effectively solved through Monte Carlo method. In this paper, we focus on efficiently parallel implementing Monte Carlo method for PageRank algorithm based on GPU. Aiming at GPU, a parallel implementation must consider instruction divergence on the single instruction multiple data (SIMD) compute units. Due to the fact that low-discrepancy sequences are determined sequences, we adopt the low-discrepancy sequences to simulate the random walks in PageRank computations in our load balancing strategy. Furthermore, we allocate each thread of a block to compute a random walk of each vertex with a same low-discrepancy sequence. As a result, no idle thread exists in the PageRank computations and warp execution efficiency is up to 99%. Moreover, our strategy loads the low-discrepancy sequences into shared memory to reduce the data fetch cost. The results of experiments show that our strategy can provide high efficiency for Monte Carlo method in PageRank problem in GPGPU environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: 7th International World Wide Web Conference, Brisbane, Australia (1998)

    Google Scholar 

  2. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte Carlo methods in pagerank computation: when one iteration is sufficient. SIAM J. Numer. Anal. 45(2) (2007)

    Google Scholar 

  3. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Internet Technology (2002, to appear)

    Google Scholar 

  4. Moler, C.D., Moler, K.A.: Numerical Computing with MATLAB. SIAM, New Delhi (2003)

    Google Scholar 

  5. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Internet Technol. (2002, to appear)

    Google Scholar 

  6. Breyer, L.A., Roberts, G.O.: Catalytic perfect simulation. Methodol. Comput. Appl. Probab. 3(2), 161–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Litvak, N.: Monte Carlo methods of PageRank computation. Department of Applied Mathematics, University of Twente (2004)

    Google Scholar 

  8. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte Carlo methods in PageRank computation: when one iteration is sufficient. SIAM J. Numer. Anal. 45(2), 890–904 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cervellera, C., Macciò, D.: Low-discrepancy points for deterministic assignment of hidden weights in extreme learning machines. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 891–896 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gan, G., Valdez, E.A.: An empirical comparison of some experimental designs for the valuation of large variable annuity portfolios. Dependence Model. 4(1) (2016)

    Google Scholar 

  11. Zapotecas-Martínez, S., Aguirre, H.E., Tanaka, K., et al.: On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2835–2842. IEEE (2015)

    Google Scholar 

  12. Sarma, A.D., et al.: Fast distributed PageRank computation. Theoret. Comput. Sci. 561, 113–121 (2015)

    Google Scholar 

  13. Andersch, M., Lucas, J., Lvlvarez-Mesa, M.A., et al.: On latency in GPU throughput microarchitectures. In: 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 169–170. IEEE (2015)

    Google Scholar 

  14. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Preprint, North Carolina State University (2003)

    Google Scholar 

  15. Yang, W., Zheng, P.: An improved PageRank algorithm based on time feedback and topic similarity. In: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, pp. 534–537 (2016)

    Google Scholar 

  16. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Stanford Digit. Libr. Working Paper 9(1), 1–14 (1999)

    Google Scholar 

  17. Boldi, P., Santini, M., Vigna, S.: Page rank: functional dependencies. ACM Trans. Inf. Syst. 27, 1–23 (2009)

    Article  Google Scholar 

  18. Chung, F.: The heat Kernel as the PageRank of a graph. Proc. Natl. Acad. Sci. U.S.A. 104, 19735–19740 (2007)

    Article  Google Scholar 

  19. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  20. Meyer, C.D.: Limits and the index of a square matrix. SIAM J. Appl. Math. 26(3), 469–478 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vigna, S.: Spectral Ranking, November 2013

    Google Scholar 

  22. Leskovec, J., Krevl, A.: {SNAP Datasets}:{Stanford} Large Network Dataset Collection (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaola Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this paper

Cite this paper

Shao, B., Lai, S., Yang, B., Xu, Y., Lin, X. (2017). A Load Balancing Strategy for Monte Carlo Method in PageRank Problem. In: Chen, G., Shen, H., Chen, M. (eds) Parallel Architecture, Algorithm and Programming. PAAP 2017. Communications in Computer and Information Science, vol 729. Springer, Singapore. https://doi.org/10.1007/978-981-10-6442-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6442-5_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6441-8

  • Online ISBN: 978-981-10-6442-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics