Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-kernel Collaboration-Induced Fuzzy Local Information C-Means Algorithm for Image Segmentation

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 917))

  • 853 Accesses

Abstract

As an advanced method in the field of image segmentation, the fuzzy local information c-means (FLICM) algorithm has the problem of which segmentation performance is degraded when neighboring pixels are polluted, and it is imperfect for clustering nonlinear data. Focusing on these points, the Multi-kernel Collaboration-induced Fuzzy Local Information C-Means (MCFLICM) algorithm is put forward. To begin with, the concept of multi-kernel collaboration is introduced in image segmentation, and the Euclidean distance of the original space is replaced by multiple kernel-induced distance that are composed of multiple kernels in different proportions. Moreover, a new fuzzy factor is proposed from the viewpoints of pixel mean and local information, so as to increase the noises immunity. Finally, the multi-kernel collaboration and the new fuzzy factor are synthesized, and then the MCFLICM algorithm is put forward. MCFLICM can automatically adjust the requirements of different data points for kernel functions in the iterative procedure and can avoid the uncertainty of the selection of kernel function by the ordinary kernel algorithms. These advantages increase the robustness of the algorithm. In addition, MCFLICM has a stronger denoising performance to improve the ability to retain the original image details. Through comparing experiments with seven related algorithms, it is found that the segmentation performance of MCFLICM in binary image, three-valued image and natural image is superior to other algorithms, and the best results are achieved by MCFLICM from the viewpoints of visual effects and evaluation indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsakiris, M.C., Vidal, R.: Algebraic clustering of affine subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 482–489 (2018)

    Article  Google Scholar 

  2. Yang, M.S., Nataliani, Y.: A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans. Fuzzy Syst. 26(2), 817–835 (2018)

    Article  Google Scholar 

  3. Huang, F.L., Li, X.L., Zhang, S.C., et al.: Harmonious genetic clustering. IEEE Trans. Cybern. 48, 199–214 (2018)

    Article  Google Scholar 

  4. Sarkar, J.P., Saha, I., Maulik, U.: Rough possibilistic type-2 fuzzy C-means clustering for MR brain image segmentation. Appl. Soft Comput. 8(6), 527–536 (2016)

    Article  Google Scholar 

  5. Tian, Y., Li, Y., Liu, D., et al.: FCM texture image segmentation method based on the local binary pattern. In: 12th World Congress on Intelligent Control and Automation, pp. 92–97. IEEE (2016)

    Google Scholar 

  6. Koundal, D.: Texture-based image segmentation using neutrosophic clustering. IET Image Process. 11(8), 640–645 (2017)

    Article  Google Scholar 

  7. Dunn, J.C.: A fuzzy relative of the ISO DATA process and its use in detecting compact well-separated clusters. J. Cybern. Syst. 3(3), 33–57 (1973)

    Google Scholar 

  8. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Adv. Appl. Pattern Recogn. 22(1171), 203–239 (1981)

    MATH  Google Scholar 

  9. Ahmed, M.N., Yamany, S.M., Mohamed, N., et al.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imag. 21(3), 193–199 (2002)

    Article  Google Scholar 

  10. Szilagyi, L., Benyo, Z., Szilagyi, S.M., et al.: MR brain image segmentation using an enhanced fuzzy C-means algorithm. In: Proceedings of Annual International Conference on Engineering in Medicine and Biology Society, vol. 5, no. 12, pp. 724–726 (2003)

    Google Scholar 

  11. Chen, S.C., Zhang, D.Q.: Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  12. Zhu, L., Chung, F.L., Wang, S.T.: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 39(3), 578–591 (2009)

    Article  Google Scholar 

  13. Zhao, F., Liu, H.Q., Fan, J.L.: A multiobjective spatial fuzzy clustering algorithm for image segmentation. Appl. Soft Comput. 30, 48–57 (2015)

    Article  Google Scholar 

  14. Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy C-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29(12), 1713–1725 (2008)

    Article  Google Scholar 

  16. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2(2), 299–312 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Lanckriet, G., Bie, T.D., Cristianini, N., et al.: A statistical framework for genomic data fusion. Bioinformatics 20(6), 2626–2635 (2004)

    Article  Google Scholar 

  18. Bach, F.R., Lanckriet, G.R.G, Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta, Canada, p. 6 (2004)

    Google Scholar 

  19. Zhao, B., Kwok, J., Zhang, C.: Multiple kernel clustering. In: Proceedings of 9th SIAM International Conference on Data Mining, pp. 638–649 (2009)

    Google Scholar 

  20. Huang, H.C., Chuang, Y.Y.: Multiple kernel fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(1), 120–134 (2012)

    Article  Google Scholar 

  21. Zhou, J., Philip, C.L., Chen, L.: Maximum-entropy-based multiple kernel, fuzzy c-means clustering algorithm. In: IEEE International Conference on Systems, Man and Cybernetics, 5–8 October, pp. 1198–1203. IEEE, San Diego (2013)

    Google Scholar 

  22. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of 21st International Conference on Machine Learning (2004)

    Google Scholar 

  23. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 20(3), 825–838 (2007)

    Article  MATH  Google Scholar 

  24. Masulli, F., Schenone, A.: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artif. Intell. Med. 16(2), 129–147 (1999)

    Article  Google Scholar 

  25. Tang, Y.M., Liu, X.P.: Differently implicational universal triple I method of (1, 2, 2) type. Comput. Math Appl. 59(6), 1965–1984 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang, Y.M., Pedrycz, W.: On the α(u, v)-symmetric implicational method for R- and (S, N)-implications. Int. J. Approx. Reasoning 92, 212–231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 61673156, 61672202, 61432004, U1613217), the Natural Science Foundation of Anhui Province (Nos. 1408085MKL15, 1508085QF129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Hu, X., Ren, F., Song, X., Wu, X. (2019). Multi-kernel Collaboration-Induced Fuzzy Local Information C-Means Algorithm for Image Segmentation. In: Sun, Y., Lu, T., Xie, X., Gao, L., Fan, H. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2018. Communications in Computer and Information Science, vol 917. Springer, Singapore. https://doi.org/10.1007/978-981-13-3044-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3044-5_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3043-8

  • Online ISBN: 978-981-13-3044-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics