Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting Malicious URLs Using a Deep Learning Approach Based on Stacked Denoising Autoencoder

  • Conference paper
  • First Online:
Trusted Computing and Information Security (CTCIS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 960))

Included in the following conference series:

Abstract

As the source of spamming, phishing, malware and many more such attacks, malicious URL is a chronic and complicated problem on the Internet. Machine learning approaches have taken effect and obtained high accuracy in detecting malicious URL. But the tedious process of extracting features from URL and the high dimension of feature vector makes the implementing time consuming. This paper presents a deep learning method using Stacked denoising autoencoders model to learn and detect intrinsic malicious features. We employ an SdA network to analyze URLs and extract features automatically. Then a logistic regression is implemented to detect malicious and benign URLs, which can generate detection models without a manually feature engineering. We have implemented our network model using Keras, a high-level neural networks API with a Tensor-flow backend, an open source deep learning library. 5 datasets were used and 4 other method were compared with our model. In the result, our architecture achieves an accuracy of 98.25% and a micro-averaged F1 score of 0.98, tested on a mixed dataset containing around 2 million samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1245–1254. ACM (2009)

    Google Scholar 

  2. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-scale detection of malicious web pages. In: Proceedings of the 20th International Conference on World Wide Web, pp. 197–206. ACM (2011)

    Google Scholar 

  3. Wang, D., Navathe, S.B., Liu, L., Irani, D., Tamersoy, A., Pu, C.: Click traffic analysis of short URL spam on twitter. In: 2013 9th International Conference on Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom), pp. 250–259. IEEE (2013)

    Google Scholar 

  4. Eshete, B., Villafiorita, A., Weldemariam, K.: BINSPECT: holistic analysis and detection of malicious web pages. In: SecureComm, pp. 149–166 (2012)

    Google Scholar 

  5. Berners-Lee, T., Masinter, L., McCahill, M.: Uniform resource locators (URL). Technical report (1994)

    Google Scholar 

  6. Zhang, H.-L., Zou, W., Han, X.-H.: Drive-by-download mechanisms and defenses. J. Softw. 24(4), 843–858 (2013). (in Chinese)

    Article  Google Scholar 

  7. Sha, H.-Z., Zhou, Z., Liu, Q.-Y., Qin, P.: Light-weight self-learning for URL classification. J. Commun. 35(9), 32–39 (2014)

    Google Scholar 

  8. Klien, F., Strohmaier, M.: Short links under attack: geographical analysis of spam in a URL shortener network. In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media, pp. 83–88. ACM (2012)

    Google Scholar 

  9. Seifert, C., Welch, I., Komisarczuk, P.: Identification of malicious web pages with static heuristics. In: 2008 Australasian Telecommunication Networks and Applications Conference, ATNAC 2008, pp. 91–96. IEEE (2008)

    Google Scholar 

  10. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  11. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  12. Mohammad, R.M., Thabtah, F., McCluskey, L.: Predicting phishing websites based on self-structuring neural network. Neural Comput. Appl. 25(2), 443–458 (2014)

    Article  Google Scholar 

  13. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain generation algorithms with long short-term memory networks. arXiv preprint arXiv:1611.00791 (2016)

  14. Wang, Y., Cai, W.D., Wei, P.C.: A deep learning approach for detecting malicious JavaScript code. Secur. Commun. Netw. 9(11), 1520–1534 (2016)

    Article  Google Scholar 

  15. Bahnsen, A.C., Bohorquez, E.C., Villegas, S., Vargas, J., González, F.A.: Classifying Phishing URLs Using Recurrent Neural Networks (2017)

    Google Scholar 

  16. Sha, H.-Z., Liu, Q.-Y., Liu, T.-W.: Survey on malicious webpage detection research. Chin. J. Comput. 39(3), 529–542 (2016)

    MathSciNet  Google Scholar 

  17. Sahoo, D., Liu, C., Hoi, S.C.: Malicious URL detection using machine learning: a survey. arXiv preprint arXiv:1701.07179 (2017)

  18. Wang, D., Navathe, S.B., Liu, L., Irani, D., Tamersoy, A., Pu, C.: Click traffic analysis of short URL spam on Twitter. In: 2013 9th International Conference Conference on Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom), pp. 250–259. IEEE (2013)

    Google Scholar 

  19. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and evaluation of a real-time URL spam filtering service. In: 2011 IEEE Symposium on Security and Privacy (SP), pp. 447–462. IEEE (2011)

    Google Scholar 

  20. Pao, H.K., Chou, Y.L., Lee, Y.J.: Malicious URL detection based on kolmogorov complexity estimation. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 01, pp. 380–387. IEEE Computer Society (2012)

    Google Scholar 

  21. Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U.: Autoencoder-based feature learning for cyber security applications. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3854–3861. IEEE (2012)

    Google Scholar 

  22. Does Alexa have a list of its top-ranked websites? https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites. Accessed 06 Apr 2016

  23. Zhao, P., Hoi, S.C.H.: Cost-sensitive online active learning with application to malicious URL detection. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 919–927. ACM (2013)

    Google Scholar 

  24. Le Roux, N., Bengio, Y.: Deep belief networks are compact universal approximators. Neural Comput. 22(8), 2192–2207 (2010)

    Article  MathSciNet  Google Scholar 

  25. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

  26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  27. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  29. Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9(1), 926 (2010)

    Google Scholar 

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Vincent, P., Larochelle, H., Bengio, Y., et al.: Extracting and composing robust features with denoising autoencoders. In: International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  32. Menon, A.K.: Large-Scale Support Vector Machines: Algorithms and Theory. Research Exam (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2016YFB0800700 & No. 2016YFC1000300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaizhi Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, H., Zhang, X., Xie, J., Hu, C. (2019). Detecting Malicious URLs Using a Deep Learning Approach Based on Stacked Denoising Autoencoder. In: Zhang, H., Zhao, B., Yan, F. (eds) Trusted Computing and Information Security. CTCIS 2018. Communications in Computer and Information Science, vol 960. Springer, Singapore. https://doi.org/10.1007/978-981-13-5913-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5913-2_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5912-5

  • Online ISBN: 978-981-13-5913-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics