Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Edge Preserved Satellite Image Denoising Using Median and Bilateral Filtering

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1035))

  • 747 Accesses

Abstract

The satellite images acquired from long distances are affected by different atmospheric disturbances such as noise and the image quality is degraded. The images thus require pre-processing to preserve the image quality for use in classification, fusion, segmentation etc. In the domain of image processing, analyzing the different noise types which affect the satellite images and also design the filter according to the affected noise is important. The existing filtering methods are capable of removing the noise in the image but is not much effective in preserving the image information such as edges, lines etc. This paper proposes a hybrid filtering technique for impulse noise removal. The hybrid filter comprises of a median filter which removes the impulse noise followed by a bilateral filter for edge preservation. The performance is studied based on the Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Feature Simillarity Index (FSIM), Structural Similarity Index (SSIM), Entropy and CPU time by comparing the results with existing denoising filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhosle, N., Manza, R., Kale, K.V.: Analysis of effect of gaussian, salt and pepper noise. In: Proceedings of the Second International Conference on Emerging Research in Computing, Information, Communication and Application. Elsevier (2014)

    Google Scholar 

  2. Siravenha, A.C., Sousa, D., Bispo, A., Pelaes, E.: The use of high-pass filters and the inpainting method to clouds removal and their impact on satellite images classification. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6979, pp. 333–342. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24088-1_35

    Chapter  Google Scholar 

  3. Courtrai, L., Lefevre, S.: Morphological path filtering at region scale for efficient and robust road network extraction from satellite imagery. Pattern Recogn. Lett. 83, 195–204 (2016)

    Article  Google Scholar 

  4. Varghese, J.: Adaptive threshold based frequency domain filter for periodic noise reduction. Int. J. Electron. Commun. 70, 1692–1701 (2016)

    Article  Google Scholar 

  5. Wang, Y., Wu, G., Chen, G., Chai, T.: Data mining based noise diagnosis and fuzzy filter design for image processing. Comput. Electr. Eng. 40, 2038–2049 (2014)

    Article  Google Scholar 

  6. Josselin, D., Mora, J.R., Ulmer, A.: MeAdian robust spatial filtering on satellite images. In: International Conference on Spatial Thinking and Geographic Information Sciences, vol. 21, pp. 222–229. Elsevier (2011)

    Google Scholar 

  7. Sankaran, K.S., Nagappan, N.V.: Noise free image restoration using hybrid filter with adaptive genetic algorithm. Comput. Electr. Eng. 54, 382–392 (2016)

    Google Scholar 

  8. Renza, D., Martinez, E., Arquero, A., Sanchez, J.: Pansharpening of high and medium resolution satellite images using bilateral filtering. In: Bloch, I., Cesar, R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 311–318. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16687-7_43

    Chapter  Google Scholar 

  9. Guo, Y., Han, S., Li, Y., Zhang, C., Bai, Y.: K-nearest neighbor combined with guided filter for hyper spectral image classification. In: International Conference on Identification, Information and Knowledge in the Internet of Things, vol. 129, pp. 159–165. Elsevier (2018)

    Google Scholar 

  10. Dong, W., Xiao, S., Li, Y.: Hyper spectral pan sharpening based guided filter and Gaussian filter. J. Vis. Commun. Image Represent. 53, 171–179 (2018)

    Google Scholar 

  11. Jadhav, B.D., Patil, P.M.: Satellite image resolution enhancement using dyadic-integer coefficients based on bi-orthogonal wavelet filters. Procedia Comput. Sci. 49, 17–23 (2015)

    Article  Google Scholar 

  12. Bhandari, A.K., Kumar, D., Kumar, A., Singh, G.K.: Optimal sub-band adaptive thresholding based edge preserved satellite image denoising using adaptive differential evolution algorithm. Neurocomputing 174, 698–721 (2016)

    Article  Google Scholar 

  13. Suresh, S., Lal, S.: Modified differential algorithm for contrast and brightness enhancement. Appl. Soft Comput. 61, 622–641 (2017)

    Google Scholar 

  14. Singh, H., Kumar, A., Balyan, L.K., Singh, G.K.: A novel optimally weighted framework of piecewise gamma corrected fractional order masking for satellite image enhancement. Comput. Electr. Eng. 1–7 (2017)

    Google Scholar 

  15. Gupta, S., Kaur, Y.: Review of different local and global contrast enhancement techniques for digital image. Int. J. Comput. Appl. 100(18), 18–23 (2014)

    Article  Google Scholar 

  16. Hegadi, R.S., Pediredla, A.K., Seelamantula, C.S.: Bilateral smoothing of gradient vector field and application to image segmentation. In: 19th IEEE International Conference on Image Processing, pp. 317–320. IEEE (2012)

    Google Scholar 

  17. Aafaque, A., Santosh, K.C.: Automatic compound figure separation in scientific articles: a study of edge map and its role for stitched panel boundary detection. In: Santosh, K.C., Hangarge, M., Bevilacqua, V., Negi, A. (eds.) RTIP2R 2016. CCIS, vol. 709, pp. 319–332. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4859-3_29

    Chapter  Google Scholar 

  18. Zohora, F.T., Antani, S., Santosh, K.C.: Circle-like foreign element detection in chest x-rays using normalized cross-correlation and unsupervised clustering. In: Proceedings of the SPIE: Medical Imaging, vol. 10574 (2018)

    Google Scholar 

  19. Zohora, F.T., Santosh, K.C.: Foreign circular element detection in chest X-rays for effective automated pulmonary abnormality screening. Int. J. Comput. Vis. Image Process. 7(2), 36–49 (2017)

    Article  Google Scholar 

  20. Santosh, K.C., Vajda, S., Antani, S., Thoma, G.R.: Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1637–1646 (2016)

    Article  Google Scholar 

  21. Santosh, K.C., Vajda, S., Antani, S., Thoma, G.: Automatic pulmonary abnormality screening using thoracic edge map. In: IEEE 28th International Symposium on Computer-Based Medical Systems (CBMS). IEEE (2016)

    Google Scholar 

  22. Santosh, K.C., Aafaque, A.: Line segment-based stitched multipanel figure separation for effective biomedical CBIR. Int J. Pattern Recogn. Artif. Intell. 31(6), 1757003(1–18) (2017)

    Article  Google Scholar 

  23. Santosh, K.C., Wendling, L., Antani, S., Thoma, G.: Overlaid arrow detection for labeling biomedical image regions. IEEE Intell. Syst. 31(3), 66–75 (2015)

    Google Scholar 

  24. Candemir, S., Borovikov, E., Santosh, K.C., Antani, S., Thoma, G.: RSILC: rotation- and scale-invariant, line-based color-aware descriptor. Image Vis. Comput. 42, 1–12 (2015)

    Article  Google Scholar 

  25. Ruikar, D.D., Santosh, K.C., Hegadi, R.S.: Automated fractured bone segmentation and labeling from CT images. J. Med. Syst. 43(3), 60 (2019). https://doi.org/10.1007/s10916-019-1176-x

    Article  Google Scholar 

  26. Ruikar, D.D., Santosh, K.C., Hegadi, R.S.: Segmentation and analysis of CT images for bone fracture detection and labeling, Chap 7. In: Medical imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019). ISBN: 9780367139612

    Google Scholar 

  27. Hegadi, R.S., Navale, D.I., Pawar, T.D., Ruikar, D.D.: Multi feature-based classification of osteoarthritis in knee joint X-ray images, Chap 5. In: Medical imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019). ISBN: 9780367139612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asokan, A., Anitha, J. (2019). Edge Preserved Satellite Image Denoising Using Median and Bilateral Filtering. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9181-1_59

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9180-4

  • Online ISBN: 978-981-13-9181-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics