Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Regional Agricultural Land Classification Based on Random Forest (RF), Decision Tree, and SVMs Techniques

  • Conference paper
  • First Online:
Fourth International Congress on Information and Communication Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1041))

  • 798 Accesses

Abstract

Land cover observation based on remote sensing data demands robust classification techniques which give the precise complex land cover mapping. Scientists and researchers made great efforts in improving classification accuracy considerably. The aim of this paper is to show outcomes gained from the RF classifier and decision tree and to compare their effectiveness with the SVMs technique. The mentioned techniques are applied over the imagery we have captured with six different classes of ROI (Region Of Interest) images including unknown range. Results indicated that the performance of the random forest classifier outperforms the decision tree and SVMs techniques performance in terms of the number of mis-classifications instances and the classification accuracy with an overall accuracy of 86%, while the decision tree accuracy is 67%, and the SVMs accuracy is 56%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Al-doski, S.B. Mansorl, H.Z.M. Shafri, Image Classification in Remote Sensing (Department of Civil Engineering, Faculty of Engineering, University Putra, Malaysia, 2013)

    Google Scholar 

  2. J.A. Benediktsson, J.R. Sveinsson, P.H. Swain, Hybrid consensus theoretic classification, in Geoscience and Remote Sensing Symposium, 1996. IGARSS’96.’Remote Sensing for a Sustainable Future.’, International, vol. 3 (IEEE, 1996), pp. 1848–1850

    Google Scholar 

  3. J.A. Benediktsson, P.H. Swain, Consensus theoretic classification methods. IEEE Trans. Syst., Man, Cybern. 22(4), 688–704 (1992)

    Article  Google Scholar 

  4. J.A. Benediktsson, P.H. Swain, O.K. Ersoy, Neural network approaches versus statistical methods in classification of multisource remote sensing data (1990)

    Google Scholar 

  5. L. Breiman, Bagging predictors. technicalreport421, department of statistics. (University of California, Berkeley, 1994)

    Google Scholar 

  6. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  7. G.J. Briem, J.A. Benediktsson, J.R. Sveinsson, Multiple classifiers applied to multisource remote sensing data. IEEE Trans. Geosci. Remote. Sens. 40(10), 2291–2299 (2002)

    Article  Google Scholar 

  8. D.R. Cutler, T.C. Edwards Jr., K.H. Beard, A. Cutler, K.T. Hess, J. Gibson, J.J. Lawler, Random forests for classification in ecology. Ecology 88(11), 2783–2792 (2007)

    Article  Google Scholar 

  9. A. Di Gregorio, L.J. Jansen, Land Cover Classification System (lCCS): Classification Concepts and User Manual (FAO, Rome, 1998)

    Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn., vol. 58, p. 16 (Wiley, New York, 2001)

    Google Scholar 

  11. Y. Freund, R. Schapire, N. Abe, A short introduction to boosting. J.-Jpn. Soc. Artif. Intell. 14(771–780), 1612 (1999)

    Google Scholar 

  12. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: Icml, vol. 96. (Citeseer 1996), pp. 148–156

    Google Scholar 

  13. M.A. Friedl, D.K. McIver, J.C. Hodges, X. Zhang, D. Muchoney, A.H. Strahler, C.E. Woodcock, S. Gopal, A. Schneider, A. Cooper et al., Global land cover mapping from modis: algorithms and early results. Remote. Sens. Environ. 83(1–2), 287–302 (2002)

    Article  Google Scholar 

  14. P.O. Gislason, J.A. Benediktsson, J.R. Sveinsson, Random forest classification of multisource remote sensing and geographic data, in Geoscience and Remote Sensing Symposium, 2004. IGARSS’04. Proceedings. 2004 IEEE International, vol. 2 (IEEE 2004), pp. 1049–1052

    Google Scholar 

  15. P.O. Gislason, J.A. Benediktsson, J.R. Sveinsson, Random forests for land cover classification. Pattern Recognit. Lett. 27(4), 294–300 (2006)

    Article  Google Scholar 

  16. J. Ham, Y. Chen, M.M. Crawford, J. Ghosh, Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote. Sens. 43(3), 492–501 (2005)

    Article  Google Scholar 

  17. A. Liaw, M. Wiener et al., Classification and regression by randomforest. R news 2(3), 18–22 (2002)

    Google Scholar 

  18. T. Lillesand, R.W. Kiefer, J. Chipman, Remote Sensing and Image Interpretation (Wiley, 2014)

    Google Scholar 

  19. D. Lu, Q. Weng, A survey of image classification methods and techniques for improving classification performance. Int. J. Remote. Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  20. F. Markowetz, L. Edler, M. Vingron, Support vector machines for protein fold class prediction. Biom. J. 45(3), 377–389 (2003)

    Article  MathSciNet  Google Scholar 

  21. P. Pellikka, W.G. Rees, Remote Sensing of Glaciers: Techniques for Tpographic, Spatial and Thematic Mapping of Glaciers (CRC Press, 2009)

    Google Scholar 

  22. W.G. Rees, P. Pellika, Principles of Remote Sensing (Remote Sensing of Glaciers, London, 2010)

    Google Scholar 

  23. J.A. Richards, J. Richards, Remote Sensing Digital Image Analysis, vol. 3 (Springer, 1999)

    Google Scholar 

  24. V.F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, J.P. Rigol-Sanchez, An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote. Sens. 67, 93–104 (2012)

    Article  Google Scholar 

  25. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers-a survey. IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) 35(4), 476–487 (2005)

    Google Scholar 

  26. T.A. Salh, M.Z. Nayef, Face recognition system based on wavelet, pca-lda and svm. Comput. Eng. Intell. Syst. J. 4(3) (2013)

    Google Scholar 

  27. S. Suralkar, A. Karode, P.W. Pawade et al., Texture image classification using support vector machine. Int. J. Comput. Appl. Technol. 3(1), 71–75 (2012)

    Google Scholar 

  28. Weston, J.: Support vector machine (and statistical learning theory) tutorial, 4 independence way. Princeton, USA, dostupné (10.5. 2016) z http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassr Azeez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azeez, N., Yahya, W., Al-Taie, I., Basbrain, A., Clark, A. (2020). Regional Agricultural Land Classification Based on Random Forest (RF), Decision Tree, and SVMs Techniques. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Fourth International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing, vol 1041. Springer, Singapore. https://doi.org/10.1007/978-981-15-0637-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0637-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0636-9

  • Online ISBN: 978-981-15-0637-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics