Abstract
In the field of process mining, one of the challenges of the trace representation problem is to exploit a lot of potentially useful information within the traces while keeping a low dimension of the corresponding vector space. Motivated by the initial results of applying the deep neural networks for producing trace representation, in this paper, we continue to study and apply two more advanced models of deep learning, i.e., Continuous Bag of Words and Long short-term memory, for generating the trace representation. The experimental results have achieved significant improvement, i.e., not only showing the close relationship between the activities in a trace but also helping to reduce the dimension of trace representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19
Jagadeesh Chandra Bose, R.P., van der Aalst, W.: Trace alignment in process mining: opportunities for process diagnostics. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2_17
de Medeiros, A.K.A., et al.: Process mining based on clustering: a quest for precision. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp. 17–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78238-4_4
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3
Jagadeesh Chandra Bose, R.P.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics, PhD thesis, Eindhoven University of Technology, The Netherlands (2012)
Sun, Y., Bauer, B., Weidlich, M.: Compound trace clustering to generate accurate and simple sub-process models. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 175–190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_12
Jablonski, S., Röglinger, M., Schönig, S.: Katrin maria wyrtki: multi-perspective clustering of process execution traces. Enterp. Model. Inf. Syst. Architect. 14, 1–22 (2018)
De Weerdt, J.: Business Process Discovery-New Techniques and Applications, PhD thesis, Catholic University of Leuven, Dutch (2012)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space, ICLR (2013)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Bui, H.-N., Vu, T.-S., Nguyen, T.-T., Nguyen, T.-C., Ha, Q.-T.: A compact trace representation using deep neural networks for process mining. In: Proceeding of the 11th IEEE International Conference on Knowledge and Systems Engineering, pp. 312–316 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Bui, HN., Vu, TS., Nguyen, HH., Nguyen, TT., Ha, QT. (2020). Exploiting CBOW and LSTM Models to Generate Trace Representation for Process Mining. In: Sitek, P., Pietranik, M., Krótkiewicz, M., Srinilta, C. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Communications in Computer and Information Science, vol 1178. Springer, Singapore. https://doi.org/10.1007/978-981-15-3380-8_4
Download citation
DOI: https://doi.org/10.1007/978-981-15-3380-8_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3379-2
Online ISBN: 978-981-15-3380-8
eBook Packages: Computer ScienceComputer Science (R0)