Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unidirectional Cyclic Network Architecture for Distributed Evolution

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

  • 986 Accesses

Abstract

How to distribute individuals in a population spatially is the most important issue in distributed evolutionary computation. In this paper, a novel distributed evolutionary model named UC model is proposed, in which the network architecture is circular, and the information propagation is unidirectional other than bidirectional. The proposed model is essentially a neighborhood model, but the communication mode between individuals is quite different, and the number of neighborhoods available is more free. As a specific algorithm for model implementation, differential evolution (DE) algorithm is incorporated into the UC model, and a distributed evolutionary algorithm called ucDE is formed. In the experiment, the benchmark functions of CEC’05 are used to test the performance. Experimental results show that the proposed model is a competitive and promising one.

J. He—This work was supported by the National Natural Science Foundation of China through Grant No. 61273315.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)

    Article  Google Scholar 

  2. Apolloni, J., Leguizamón, G., García-Nieto, J., Alba, E.: Island based distributed differential evolution: an experimental study on hybrid testbeds. In: 2008 Eighth International Conference on Hybrid Intelligent Systems, pp. 696–701. IEEE (2008)

    Google Scholar 

  3. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1777–1784. IEEE (2005)

    Google Scholar 

  4. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)

    Google Scholar 

  5. Ballester, P.J., Stephenson, J., Carter, J.N., Gallagher, K.: Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 498–505. IEEE (2005)

    Google Scholar 

  6. Folino, G., Pizzuti, C., Spezzano, G.: Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern classification. IEEE Trans. Evol. Comput. 12(4), 458–468 (2008)

    Article  Google Scholar 

  7. García-Martínez, C., Lozano, M.: Hybrid real-coded genetic algorithms with female and male differentiation. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 896–903. IEEE (2005)

    Google Scholar 

  8. Ge, Y.F., Yu, W.J., Lin, Y., Gong, Y.J., Zhan, Z.H., Chen, W.N., Zhang, J.: Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans. Cybern. 48(7), 2166–2180 (2017)

    Article  Google Scholar 

  9. Giacobini, M., Tomassini, M., Tettamanzi, A.G.B., Alba, E.: Selection intensity in cellular evolutionary algorithms for regular lattices. IEEE Trans. Evol. Comput. 9(5), 489–505 (2005)

    Article  Google Scholar 

  10. Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q., Li, J.J.: Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl. Soft Comput. 34, 286–300 (2015)

    Article  Google Scholar 

  11. Herrera, F., Lozano, M.: Two-loop real-coded genetic algorithms with adaptive control of mutation step sizes. Appl. Intell. 13(3), 187–204 (2000). https://doi.org/10.1023/A:1026531008287

    Article  Google Scholar 

  12. Marc, D., Christian, G., Marc, P.: Analysis of a master-slave architecture for distributed evolutionary computations. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(1), 229–235 (2006). A Publication of the IEEE Systems Man and Cybernetics Society

    Article  Google Scholar 

  13. Molina, D., Herrera, F., Lozano, M.: Adaptive local search parameters for real-coded memetic algorithms. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 888–895. IEEE (2005)

    Google Scholar 

  14. Pierreval, H., Paris, J.L.: Distributed evolutionary algorithms for simulation optimization. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30(1), 15–24 (2002)

    Article  Google Scholar 

  15. Posik, P.: Real-parameter optimization using the mutation step co-evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 872–879. IEEE (2005)

    Google Scholar 

  16. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with differential evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 506–513. IEEE (2005)

    Google Scholar 

  17. Roy, G., Lee, H., Welch, J.L., Zhao, Y., Pandey, V., Thurston, D.: A distributed pool architecture for genetic algorithms. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1177–1184. IEEE (2009)

    Google Scholar 

  18. Sinha, A., Tiwari, S., Deb, K.: A population-based, steady-state procedure for real-parameter optimization. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 514–521. IEEE (2005)

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  20. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report 2005005 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, J. (2020). Unidirectional Cyclic Network Architecture for Distributed Evolution. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics