Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Parallel Gene Expression Clustering Algorithm Based on Producer-Consumer Model

  • Conference paper
  • First Online:
Artificial Intelligence Algorithms and Applications (ISICA 2019)

Abstract

Clustering is one of the important tasks of machine learning. Gene Expression Programming (GEP) is used to solve clustering problems because of its strong global searching ability. In order to solve the limitation of lower rate of convergence and easy falling into optimal local solution in the traditional GEP clustering process, this paper proposes a parallel GEP clustering algorithm based on the producer-consumer model (PGEPC/PCM), which parallelizes the time-consuming operations such as fitness calculation, recombination, and mutation in GEP clustering analysis to speed up, improves the calculation method of fitness function to enable it to cluster automatically. This algorithm can fast calculate accurate clustering center points in parallel. Extensive experiments on four widely used benchmark Iris, Wine, Soybean and Seeds from the UCI machine learning data sets are conducted to investigate the influence of algorithmic component and results are compared with traditional GEP clustering algorithm. These comparisons demonstrate the competitive efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferreira, C.: Gene Expression Programming. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32849-1

    Book  MATH  Google Scholar 

  2. Bandyopadhyay, S., Maulik, U.: An evolutionary technique based on k-means algorithm for optimal clustering in RN. Inf. Sci. 146(1–4), 221–237 (2002). https://doi.org/10.1016/s0020-0255(02)00208-6

    Article  MATH  Google Scholar 

  3. Chen, Y., Tang, C., Ye, S.Y., Li, C., Liu, Q.H.: An auto-clustering algorithm based on gene expression programming 39, 107–112 (2007)

    Google Scholar 

  4. Colbourn, E., Roskilly, S., Rowe, R., York, P.: Modelling formulations using gene expression programming - a comparative analysis with artificial neural networks. Eur. J. Pharm. Sci. 44(3), 366–374 (2011). https://doi.org/10.1016/j.ejps.2011.08.021

    Article  Google Scholar 

  5. Deng, S., Zhou, A.H., Yue, D., Hu, B., Zhu, L.P.: Distributed intrusion detection based on hybrid gene expression programming and cloud computing in a cyber physical power system. IET Control Theory Appl. 11(11), 1822–1829 (2017). https://doi.org/10.1049/iet-cta.2016.1401

    Article  MathSciNet  Google Scholar 

  6. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. ArXiv cs.AI/0102027 (2001)

    Google Scholar 

  7. Gholami, A., Bonakdari, H., Zeynoddin, M., Ebtehaj, I., Gharabaghi, B., Khodashenas, S.R.: Reliable method of determining stable threshold channel shape using experimental and gene expression programming techniques. Neural Comput. Appl. 31(10), 5799–5817 (2018). https://doi.org/10.1007/s00521-018-3411-7

    Article  Google Scholar 

  8. Hongguo, C., Chanan, Y.: Research on GEP-based cluster algorithm for serial program to be parallelized. J. S.-Cent. Univ. Nationalities (Nat. Sci.Ed.) 4, 112–115 (2017)

    Google Scholar 

  9. Huang, Z., Li, M., Chousidis, C., Mousavi, A., Jiang, C.: Schema theory-based data engineering in gene expression programming for big data analytics. IEEE Trans. Evol. Comput. 22(5), 792–804 (2018). https://doi.org/10.1109/tevc.2017.2771445

    Article  Google Scholar 

  10. Jedrzejowicz, J., Jedrzejowicz, P., Wierzbowska, I.: Implementing gene expression programming in the parallel environment for big datasets’ classification. Vietnam J. Comput. Sci. 06(02), 163–175 (2019). https://doi.org/10.1142/s2196888819500118

    Article  Google Scholar 

  11. Jiang, D.H., Zhang, S.Y.: K-means auto-clustering algorithm based on gene expression programming. Comput. Simul. 27, 216–220 (2010)

    MathSciNet  Google Scholar 

  12. Jiang, Z., Li, T., Min, W., Qi, Z., Rao, Y.: Fuzzy c-means clustering based on weights and gene expression programming. Pattern Recogn. Lett. 90, 1–7 (2017). https://doi.org/10.1016/j.patrec.2017.02.015

    Article  Google Scholar 

  13. Murthy, C., Chowdhury, N.: In search of optimal clusters using genetic algorithms. Pattern Recogn. Lett. 17(8), 825–832 (1996). https://doi.org/10.1016/0167-8655(96)00043-8

    Article  Google Scholar 

  14. Yang, L., Li, K., Zhang, W., Zheng, L., Ke, Z., Qi, Y.: Optimization of classification algorithm based on gene expression programming. J. Ambient Intell. Humanized Comput. (2017). https://doi.org/10.1007/s12652-017-0563-8

  15. Zheng, Y., Jia, L., Cao, H.: Multi-objective gene expression programming for clustering. Inf. Technol. Control 41(3) (2012). https://doi.org/10.5755/j01.itc.41.3.1330

  16. Zhong, J., Feng, L., Ong, Y.S.: Gene expression programming: a survey [review article]. IEEE Comput. Intell. Mag. 12(3), 54–72 (2017). https://doi.org/10.1109/mci.2017.2708618

    Article  Google Scholar 

  17. Zhong, J., Ong, Y.S., Cai, W.: Self-learning gene expression programming. IEEE Trans. Evol. Comput. 20(1), 65–80 (2016). https://doi.org/10.1109/tevc.2015.2424410

    Article  Google Scholar 

  18. Aytac, G., Ali, A.: New approach for stage-discharge relationship: gene-expression programming. J. Hydrol. Eng. 14(8), 812–820 (2009). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000044

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 61573157 and 61703170), Science and Technology Project of Guangdong Province of China (Grant Nos. 2018A0124 and 2017A020224004), Science and Technology Project of Tianhe District of Guangzhou City (Grant No. 201702YG061), Science and technology innovation project for College Students (Grant No. 201910564129). The authors also gratefully acknowledge the reviewers for their helpful comments and suggestions that helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L. et al. (2020). A Parallel Gene Expression Clustering Algorithm Based on Producer-Consumer Model. In: Li, K., Li, W., Wang, H., Liu, Y. (eds) Artificial Intelligence Algorithms and Applications. ISICA 2019. Communications in Computer and Information Science, vol 1205. Springer, Singapore. https://doi.org/10.1007/978-981-15-5577-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5577-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5576-3

  • Online ISBN: 978-981-15-5577-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics