Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Japanese Predicate Argument Structure Analysis with Pointer Networks

  • Conference paper
  • First Online:
Computational Linguistics (PACLING 2019)

Abstract

Recently, neural network models with sequence labeling were adopted for Japanese predicate argument structure analysis (PASA). However, the sequence labeling approach can assign the same argument to multiple arguments. Thus, we propose a novel neural PASA method using pointer networks to alleviate the problem of multiple assignments. Experimental results show that our single model can achieve state-of-the-art performance on the NAIST Text Corpus without using syntactic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Japanese intra-sentential PASA includes intra-sentential zero anaphora; however, this and exophora are excluded here.

  2. 2.

    Functional chunk.

  3. 3.

    Dependency information was used only for evaluation.

  4. 4.

    http://cl.asahi.com/api_data/wordembedding.html.

References

  1. Akbik, A., Li, Y.: K-SRL: instance-based learning for semantic role labeling. In: Proceedings of COLING pp. 599–608 (2016)

    Google Scholar 

  2. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of ICML, pp. 115–123 (2013)

    Google Scholar 

  3. Cheng, P., Erk, K.: Implicit argument prediction as reading comprehension. arXiv preprint arXiv:1811.03554 (2018)

  4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of EMNLP, pp. 1724–1734 (2014)

    Google Scholar 

  5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  7. Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.: Retrofitting word vectors to semantic lexicons. In: Proceedings of NAACL. pp. 1606–1615 (2015)

    Google Scholar 

  8. FitzGerald, N., Täckström, O., Ganchev, K., Das, D.: Semantic role labeling with neural network factors. In: Proceedings of EMNLP, pp. 960–970 (2015)

    Google Scholar 

  9. Hacioglu, K.: Semantic role labeling using dependency trees. In: Proceedings of COLING, pp. 1273–1276 (2004)

    Google Scholar 

  10. Hayashibe, Y., Komachi, M., Matsumoto, Y.: Japanese predicate argument structure analysis exploiting argument position and type. In: Proceedings of IJCNLP, pp. 201–209 (2011)

    Google Scholar 

  11. He, L., Lee, K., Levy, O., Zettlemoyer, L.: Jointly predicting predicates and arguments in neural semantic role labeling. In: Proceedings of ACL, pp. 364–369 (2018)

    Google Scholar 

  12. Iida, R., Inui, K., Matsumoto, Y.: Exploiting syntactic patterns as clues in zero-anaphora resolution. In: Proceedings of ACL-COLING, pp. 625–632 (2006)

    Google Scholar 

  13. Imamura, K., Saito, K., Izumi, T.: Discriminative approach to predicate-argument structure analysis with zero-anaphora resolution. In: Proceedings of ACL-IJCNLP, pp. 85–88 (2009)

    Google Scholar 

  14. Li, J., Sun, A., Joty, S.: Segbot: a generic neural text segmentation model with pointer network. In: Proceedings of IJCAI, pp. 4166–4172 (2018)

    Google Scholar 

  15. Matsubayashi, Y., Inui, K.: Revisiting the design issues of local models for Japanese predicate-argument structure analysis. In: Proceedings of IJCNLP, pp. 128–133 (2017)

    Google Scholar 

  16. Matsubayashi, Y., Inui, K.: Distance-free modeling of multi-predicate interactions in end-to-end Japanese predicate argument structure analysis. In: Proceedings of COLING. pp. 94–106 (2018)

    Google Scholar 

  17. Omori, H., Komachi, M.: Multi-task learning for Japanese predicate argument structure analysis. In: Proceedings of NAACL, pp. 3404–3414 (2019)

    Google Scholar 

  18. Ouchi, H., Shindo, H., Duh, K., Matsumoto, Y.: Joint case argument identification for Japanese predicate argument structure analysis. In: Proceedings of ACL-IJCNLP, pp. 961–970 (2015)

    Google Scholar 

  19. Ouchi, H., Shindo, H., Matsumoto, Y.: Neural modeling of multi-predicate interactions for Japanese predicate argument structure analysis. In: Proceedings of ACL, pp. 1591–1600 (2017)

    Google Scholar 

  20. Pennington, J., Socher, R., Manning, C.: GloVe: Global vectors for word representation. In: Proceedings of HLT-EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  21. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep contextualized word representations. In: Proceedings of NAACL, pp. 2227–2237 (2018)

    Google Scholar 

  22. Pradhan, S., Hacioglu, K., Ward, W., Martin, J.H., Jurafsky, D.: Semantic role chunking combining complementary syntactic views. In: Proceedings of CoNLL, pp. 217–220 (2005)

    Google Scholar 

  23. Punyakanok, V., Roth, D., Yih, W.T.: The importance of syntactic parsing and inference in semantic role labeling. Computat. Linguistics 34(2), 257–287 (2008)

    Article  Google Scholar 

  24. Strubell, E., Verga, P., Andor, D., Weiss, D., McCallum, A.: Linguistically-informed self-attention for semantic role labeling. In: Proceedings of EMNLP, pp. 5027–5038 (2018)

    Google Scholar 

  25. Taira, H., Fujita, S., Nagata, M.: A Japanese predicate argument structure analysis using decision lists. In: Proceedings of EMNLP, pp. 523–532 (2008)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Proceedings of NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  27. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Proceedings of NIPS, pp. 2692–2700 (2015)

    Google Scholar 

  28. Yoshikawa, K., Asahara, M., Matsumoto, Y.: Jointly extracting Japanese predicate-argument relation with Markov logic. In: Proceedings of IJCNLP, pp. 1125–1133 (2011)

    Google Scholar 

  29. Zhai, F., Potdar, S., Xiang, B., Zhou, B.: Neural models for sequence chunking. In: Proceedings of AAAI, pp. 3365–3371 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keigo Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takahashi, K., Omori, H., Komachi, M. (2020). Japanese Predicate Argument Structure Analysis with Pointer Networks. In: Nguyen, LM., Phan, XH., Hasida, K., Tojo, S. (eds) Computational Linguistics. PACLING 2019. Communications in Computer and Information Science, vol 1215. Springer, Singapore. https://doi.org/10.1007/978-981-15-6168-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6168-9_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6167-2

  • Online ISBN: 978-981-15-6168-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics