Abstract
The combination of Unmanned Aerial Vehicle (UAV) technology and computer vision has become popular in a wide range of applications, such as surveillance and reconnaissance, while popular evaluation measures are sometimes not applicable for specific tasks. In order to evaluate visual object detection and tracking algorithms of low-altitude aerial video properly, we first summarize the evaluation basis of computer vision tasks, including ground truth, prediction-to-ground truth assignment strategy and distance measures between prediction and ground truth. Then, we analyze the advantages and disadvantages of visual object detection and tracking performance measures, including average precision (AP), F-measure, and accuracy. Finally, for the low-altitude (nearly 100 m) surveillance mission of small unmanned aerial vehicles, we discuss the threshold optimization method of popular measures and the design strategy of application measures. Our work provides a reference in the aspect of performance measures design for researchers of UAV vision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cehovin, L., Leonardis, A., Kristan, M.: Visual object tracking performance measures revisited. IEEE Trans. Image Process. 25(3), 1261–1274 (2016)
Everingham, M., Gool, L.V., Williams, C.K.I., et al.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Lin, T.Y., Maire, M., Belongie, S., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele B., Tuytelaars, T. (eds.) Computer Vision–ECCV 2014, LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Kristan, M., et al.: The sixth visual object tracking VOT2018 challenge results. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision–ECCV 2018 Workshops, LNCS, vol. 11129, pp. 3–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_1
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
Vidit, J., Erik, L.M.: FDDB: a benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, Department of Computer Science, University of Massachusetts, Amherst (2010)
Wojek, C., Dollar, P., Schiele, B., et al.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE, Providence (2012)
Baykara, H.C., Bıyık, E., Gül, G., et al.: Real-time detection, tracking and classification of multiple moving objects in UAV videos. In: 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 945–950. IEEE, Boston (2017)
Du, D.W., Qi, Y.K., Yu, H.Y., et al.: The unmanned aerial vehicle benchmark: object detection and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision–ECCV 2018. LNCS, vol. 11214, pp. 375–391. Springer, Cham (2018)
Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision–ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27
Zhang, P.Y., Zhong, Y.X., Li, X.Q.: SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications. CoRR abs/1907.11093 (2019)
Zhu, P.F., Wen, L.Y., Du, D.W., et al.: VisDrone-VDT2018: the vision meets drone video detection and tracking challenge results. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision–ECCV 2018 Workshops. LNCS, vol. 11133, pp. 496–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-11021-5_29
Measuring Object Detection models-mAP-What is Mean Average Precision? https://towardsdatascience.com/what-is-map-understanding-the-statistic-of-choice-for-comparing-object-detection-models-1ea4f67a9dbd. Accessed 07 Oct 2019
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., et al.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)
Zhang, K.H., Zhang, L., Yang, M.H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision–ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_62
Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. Comput. Vis. Image Underst. 117(10), 1245–1256 (2013)
Kosub, S.: A note on the triangle inequality for the Jaccard distance. Pattern Recogn. Lett. 120, 36–38 (2019)
Leal-Taixé, L., Milan, A., Reid, I.D., et al.: MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking. CoRR, abs/1504.01942 (2015)
Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua, G., Jegou, H. (eds.) Computer Vision – ECCV 2016 Workshops, LNCS, vol. 9914, pp. 777–823. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_54
Zou, Z.X., Shi, Z.W., Guo, Y.H., et al.: Object Detection in 20 Years: A Survey. CoRR abs/1905.05055 (2019)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE, San Diego (2005)
Dollar, P., Wojek, C., Schiele, B., et al.: Pedestrian detection: a benchmark. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 304–311. IEEE, Miami (2009)
Everingham, M., Eslami, S.M.A., Gool, L.V., et al.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)
Kisantal, M., Wojna, Z., Murawski, J., et al.: Augmentation for small object detection. CoRR abs/1902.07296 (2019)
Kristan, M., Pflugfelder R., Leonardis A., et al.: The visual object tracking VOT2013 challenge results. In: 2013 IEEE International Conference on Computer Vision Workshops, pp. 98–111. IEEE, Sydney (2013)
Wu, Y., Lim J., Yang, M.H.: Online object tracking: a benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418. IEEE, Portland (2013)
Foolwood Homepage. https://github.com/foolwood/benchmark_results. Accessed 07 Oct 2019
Kristan, M., Matas, J., Leonardis, A., et al.: A novel performance evaluation methodology for single-target trackers. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2137–2155 (2016)
Kristan, M., Pflugfelder, R., Leonardis, A., et al.: The visual object tracking VOT2014 challenge results. In: Agapito, L., Bronstein, M., Rother, C. (eds.) Computer Vision - ECCV 2014 Workshops. LNCS, vol. 8926, pp. 191–217. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-16181-5_14
Kristan, M., Pflugfelder, R., Matas, J., et al.: The visual object tracking VOT2015 challenge results. In: 2015 IEEE International Conference on Computer Vision Workshop, pp. 564–586. IEEE, Santiago (2016)
Xu, X.W., Zhang, X.Y., Yu, B., et al.: DAC-SDC Low Power Object Detection Challenge for UAV Applications. CoRR abs/1809.00110 (2018)
Zhu, P.F., Wen, L.Y., Bian, X., et al.: Vision Meets Drones: A Challenge. CoRR abs/1804.07437 (2018)
Babenko, B., Yang, M.H., Belongie, S.J.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Molchanov, P., Tyree, S., Karras, T., et al.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, L., Shu, X., Zhang, W., Chen, Y. (2020). Design and Optimization of Evaluation Metrics in Object Detection and Tracking for Low-Altitude Aerial Video. In: Tian, Y., Ma, T., Khan, M. (eds) Big Data and Security. ICBDS 2019. Communications in Computer and Information Science, vol 1210. Springer, Singapore. https://doi.org/10.1007/978-981-15-7530-3_18
Download citation
DOI: https://doi.org/10.1007/978-981-15-7530-3_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-7529-7
Online ISBN: 978-981-15-7530-3
eBook Packages: Computer ScienceComputer Science (R0)