Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generation of Pseudorandom Sequence Using Regula-Falsi Method

  • Conference paper
  • First Online:
Proceedings of the Sixth International Conference on Mathematics and Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1262))

  • 339 Accesses

Abstract

Pseudorandom number generator (PRNG) generates a sequence of numbers whose properties approximate the properties of sequences of random numbers. The sequence is not truly random as it can be regenerated by some initial values called seed. Pseudorandom sequence has a wide range of applications in science and engineering like modeling and simulation, encryption, gambling, gaming, etc. Chaos theory has established itself a good choice for pseudorandom sequence generation due its intrinsic properties like ergodicity, sensitivity to initial condition, etc. Several non-chaotic methods have also established with dignity for pseudorandom number generation. In this paper, we have proposed a non-chaotic method for pseudorandom sequence generation. Regula-Falsi method is used as the backbone for the said. NIST randomness test and several other tests have proved the randomness of the generated sequence and have established it as a suitable alternative for pseudorandom sequence generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knuth D (1981) The art of computer programming, vol 2 (Seminumerical Algorithms).” Addison-Wesley

    Google Scholar 

  2. Wolfram S (1986) Random sequence generation by cellular automata. Adv Appl Math 7:123–169

    Article  MathSciNet  Google Scholar 

  3. Hortensius P, McLeod R, Card H (1989) Parallel random number generation for VLSI systems using cellular automata. IEEE Trans Comput 38(10):1466–1473 Oct

    Article  Google Scholar 

  4. Martin P (2002) An analysis of random number generators for a hardware implementation of genetic programming using FPGAs and Handel C. In: GECCO 2002: proceedings of the genetic and evolutionary computation conference, pp 837–844

    Google Scholar 

  5. Kandar S, Dhaibat C, Bhattacharjee A, Dhara BC (2019) Image encryption using sequence generated by cyclic group. J Inf Secur Appl 44 117–129 (2019)

    Google Scholar 

  6. Phatak S, Rao S (1995) Logistic map: a possible random number generator. Phys Rev E 51(4):3670–3678

    Article  Google Scholar 

  7. Patidar V, Sud KK, Pareek NK (2009) A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33.4

    Google Scholar 

  8. Chen Shih-Liang, Hwang TingTing, Lin Wen-Wei (2010) Randomness enhancement using digitalized modified logistic map. IEEE Trans Circuits Syst II: Exp Br 57(12):996–1000

    Article  Google Scholar 

  9. Wang Yong, Liu Zhaolong, Ma Jianbin, He Haiyuan (2016) A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn 83(4):2373–2391

    Article  MathSciNet  Google Scholar 

  10. Murillo-Escobar MA, Cruz-Hernández C, Cardoza-Avendaño L, Méndez-Ramírez R (2017) A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn 87(1):407–425

    Article  MathSciNet  Google Scholar 

  11. Luca A, Ilyas A, Vlad A (2011) Generating random binary sequences using tent map. In: ISSCS 2011-international symposium on signals, circuits and systems. IEEE, pp 1–4

    Google Scholar 

  12. Cristina DA, Radu B, Ciprian R (2012) A new pseudorandom bit generator using compounded chaotic tent maps. In: 2012 9th International Conference on Communications (COMM). IEEE, pp 339–342

    Google Scholar 

  13. Zheng Y, Zheng J (2018) Chaotic random sequence generated from tent map on variant maps. J Math Comput Sci

    Google Scholar 

  14. Valtierra JL, Tlelo-Cuautle E, Rodríguez-Vázquez Á (2017) A switched-capacitor skew-tent map implementation for random number generation. Int J Circuit Theory Appl 45(2):305–315

    Google Scholar 

  15. Palacios-Luengas L, Pichardo-Méndez JL, Díaz-Méndez JA, Rodríguez-Santos F, Vázquez-Medina R (2019) PRNG based on skew tent map. Arabian J Sci Eng 44(4):3817–3830

    Article  Google Scholar 

  16. Hu HanPing, Liu LingFeng, Ding NaiDa (2013) Pseudorandom sequence generator based on the Chen chaotic system. Comput Phys Commun 184(3):765–768

    Article  MathSciNet  Google Scholar 

  17. Li Ping, Li Zhong, Halang Wolfgang A, Chen Guanrong (2006) A multiple pseudorandom-bit generator based on a spatiotemporal chaotic map. Phys Lett A 349(6):467–473

    Article  Google Scholar 

  18. Sun Fuyan, Liu Shutang (2009) Cryptographic pseudo-random sequence from the spatial chaotic map. Chaos, Solitons Fractals 41(5):2216–2219

    Article  Google Scholar 

  19. Stoyanov B, Kordov K (2015) Novel secure pseudo-random number generation scheme based on two tinkerbell maps. Adv Stud Theor Phys 9(9):411–421

    Article  Google Scholar 

  20. Hua Z, Zhou Y, Pun C-M, Philip Chen CL (2015) 2D Sine Logistic modulation map for image encryption. Inf Sci 297:80–94

    Google Scholar 

  21. Hua Z, Zhou Y (2016) Image encryption using 2D Logistic-adjusted-Sine map. Inf Sci 339:237–253

    Article  Google Scholar 

  22. Avaroglu Erdinc (2017) Pseudorandom number generator based on Arnold cat map and statistical analysis. Turkish J Electr Eng Comput Sci 25(1):633–643

    Article  Google Scholar 

  23. Barash L, Shchur. LN (2006) Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation. Phys Rev E 73(3)

    Google Scholar 

  24. Couchot J-F, Heam P-C, Guyeux C, Wang Q, Bahi JM (2014) Pseudorandom number generators with balanced gray codes. In: 11th International Conference on Security and Cryptography (SECRYPT). IEEE, pp 1–7

    Google Scholar 

  25. Mascagni M, Cuccaro SA, Pryor DV, Robinson ML (1995) A fast, high quality, and reproducible parallel lagged-Fibonacci pseudorandom number generator. J Comput Phys 119(2):211–219

    Google Scholar 

  26. Orue AB, Montoya F, Hernández Encinas L (2010) Trifork, a new pseudorandom number generator based on lagged fibonacci maps

    Google Scholar 

  27. Gebhardt Friedrich (1967) Generating pseudo-random numbers by shuffling a Fibonacci sequence. Math Comput 21(100):708–70

    Article  MathSciNet  Google Scholar 

  28. Chernov N, Markarian R (2006) Chaotic billiards. No. 127. American Mathematical Soc

    Google Scholar 

  29. Lee JJ, Lee S, Yoon T (2016) Improvement of KMRNG Using n-Pendulum. In: International conference on intelligent computing. Springer, Cham, pp 670–681

    Google Scholar 

  30. Everson RM (1986) Chaotic dynamics of a bouncing ball. Physica D: Nonlinear Phenom 19(3):355–383

    Google Scholar 

  31. Gangyi H, Jin P, Weili K (2019) A novel algorithm for generating pseudo-random number. Int J Comput Intell Syst 12(2):643–648

    Google Scholar 

  32. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E (2001) A statistical test suite for random and pseudorandom number generators for cryptographic applications. Booz-Allen and Hamilton Inc Mclean Va

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aakash Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, A., Kandar, S., Dhara, B.C. (2021). Generation of Pseudorandom Sequence Using Regula-Falsi Method. In: Giri, D., Buyya, R., Ponnusamy, S., De, D., Adamatzky, A., Abawajy, J.H. (eds) Proceedings of the Sixth International Conference on Mathematics and Computing. Advances in Intelligent Systems and Computing, vol 1262. Springer, Singapore. https://doi.org/10.1007/978-981-15-8061-1_31

Download citation

Publish with us

Policies and ethics