Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Noninvasive Research on Cardiac Electrical Activity by Non-Gaussian Prior Bayesian Matching Pursuit

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1286))

Included in the following conference series:

  • 1149 Accesses

Abstract

It is an important branch of biometrics security to obtain the cardiomagnetic signal non-invasively. In our study, the problem of sparse cardiac current source reconstruction is studied using Bayesian matching pursuit with non-Gaussian prior. The characteristics of cardiac electrical activity by source imaging are analyzed. We use goodness of fit (GoF) and root mean square error (RMSE) to measure the reconstruction ability of the source reconstruction method. The trajectory during QRS complex and T-wave segment can preliminarily reveal the conduction features of electrical excitation and effective electrophysiological information in ventricular depolarization and repolarization. The experimental results verify that our method with the source solution non-Gaussian or unknown prior is available for cardiomagnetic signal’s inverse problem and cardiac sparse source imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baule, G., Mcfee, R.: Detection of the magnetic field of the heart. Am. Heart J. 66(1), 95–97 (1963)

    Article  Google Scholar 

  2. Wang, J., Yang, K., Yang, R., Kong, X., Chen, W.: Squid gradiometer module for fetal magnetocardiography measurements inside a thin magnetically shielded room. IEEE Trans. Appl. Supercond. 29(2), 1–4 (2019)

    Google Scholar 

  3. Shanehsazzadeh, F., Kalantari, N., Sarreshtedari, F., Fardmanesh, M.: Environmental noise cancellation for high-TC SQUID-based magnetocardiography systems using a bistage active shield. IEEE Trans. Appl. Supercond. 27(7), 1–6 (2017)

    Article  Google Scholar 

  4. Sun, W., Kobayashi, K.: Estimation of magnetocardiography current sources using reconstructed magnetic field data. IEEE Trans. Magn. 53(11), 1–4 (2017)

    Google Scholar 

  5. Iwakami, N., Aiba, T., Kamakura, S., Takaki, H., Kusano, K.: Identification of malignant early repolarization pattern by late qrs activity in high‐resolution magnetocardiography. Annals of Noninvasive Electrocardiology (2020)

    Google Scholar 

  6. Shin, E.S., Park, J.W., Lim, D.S.: Magnetocardiography for the diagnosis of non-obstructive coronary artery disease. Clin. Hemorheol. Microcirc. 69(1–2), 9–11 (2018)

    Article  Google Scholar 

  7. Salido-Ruiz, R.A., Ranta, R., Korats, G., Cam, S.L., Louis-Dorr, V.: A unified weighted minimum norm solution for the reference inverse problem in EEG. Comput. Biol. Med. 115, 103510 (2019)

    Article  Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Yi, L.: Fast Time-varying Channel Estimation for OFDM Systems Based on Compressed Sensing [ph.d thesis]. Beijing Institute of Technology (2015)

    Google Scholar 

  10. Pewsey, A.: Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions. TEST 27(1), 147–172 (2017). https://doi.org/10.1007/s11749-017-0538-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude to Prof. Shiqin Jiang, Ph.D Dafang Zhou, Ph.D Chen Zhao for academic exchange and great support during this project. The authors are also grateful to Shanghai Institute of Microsystem and Information Technology, for kindly providing the data. This work is supported by the Natural Science Foundation of Shanghai (Grant No. 18ZR1427400), the Shanghai Business School ‘Phosphor’ Science Foundation, and the Natural Science Foundation of Shanghai (Grant No. 18ZR1427500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Si .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bing, L., Li, Y., Si, W. (2020). Noninvasive Research on Cardiac Electrical Activity by Non-Gaussian Prior Bayesian Matching Pursuit. In: Xu, G., Liang, K., Su, C. (eds) Frontiers in Cyber Security. FCS 2020. Communications in Computer and Information Science, vol 1286. Springer, Singapore. https://doi.org/10.1007/978-981-15-9739-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9739-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9738-1

  • Online ISBN: 978-981-15-9739-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics