Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FDRA: Fully Distributed Routing Architecture for Private Virtual Network in Public Cloud

  • Conference paper
  • First Online:
Parallel Architectures, Algorithms and Programming (PAAP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1362))

  • 803 Accesses

Abstract

A virtual private cloud (VPC) is often comprised of a set of virtual computing, storage and network resource which is allocated from a public cloud. Public clouds build virtualized resource pools based on physical infrastructure including generic x86 servers, network devices (e.g. switches, routers, firewalls), storage servers and so forth to dynamically provision virtual computing and storage resource to customers, while virtual network is a bridge that connects all the computing resource in a VPC and segregates network traffic between different VPCs. One VPC may contain multiple subnets, which makes private virtual network should provide the capability of communications between virtual computing resources i.e. virtual machines’ communication through Layer-2 switching and Layer-3 routing simultaneously. In this paper we propose a fully distributed routing architecture (FDRA) for private virtual network to fulfill the requirements of public cloud. FDRA splits the VPC traffic into two categories, i.e. the traffic goes inside of a VPC and the traffic goes out of a VPC, and presents two different routing entities to route different traffic issued from virtual machines in a VPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paladi, N., Gehrmann, C.: TruSDN: bootstrapping trust in cloud network infrastructure. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICSSITE, vol. 198, pp. 104–124. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59608-2_6

    Chapter  Google Scholar 

  2. Yang, S., Li, F., Trajanovski, S., Chen, X., Wang, Y., Fu, X.: Delay-aware virtual network function placement and routing in edge clouds. IEEE Trans. Mobile Comput. (2019)

    Google Scholar 

  3. Firestone, D.: VFP: a virtual switch platform for host SDN in the public cloud. In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2017), pp. 315–328 (2017)

    Google Scholar 

  4. Hu, B., Chen, S., Chen, J., Hu, Z.: A mobility-oriented scheme for virtual machine migration in cloud data center network. IEEE Access. 17(4), 8327–8337 (2016)

    Article  Google Scholar 

  5. Otokura, M., Leibnitz, K., Koizumi, Y., Kominami, D., Shimokawa, T., Murata, M.: Evolvable virtual network function placement method: mechanism and performance evaluation. IEEE Trans. Netw. Serv. Manage. 16(1), 27–40 (2019)

    Article  Google Scholar 

  6. Kwon, J., Lee, T., Hähni, C., Perrig, A.: SVLAN: secure & scalable network virtualization. In: Proceedings of the Symposium on Network and Distributed System Security (NDSS) (2020)

    Google Scholar 

  7. Xiao, X., Zheng, X., Zhang, Y.: A multidomain survivable virtual network mapping algorithm. Secur. Commun. Netw. (2017)

    Google Scholar 

  8. Martini, B., Paganelli, F.: A service-oriented approach for dynamic chaining of virtual network functions over multi-provider software-defined networks. Future Internet. 8(2), 24 (2016)

    Article  Google Scholar 

  9. Miotto, G., Luizelli, M.C., da Costa Cordeiro, W.L., Gaspary, L.P.: Adaptive placement & chaining of virtual network functions with NFV-PEAR. J. Internet Serv. Appl. 10(1), 3 (2019)

    Article  Google Scholar 

  10. Dwaraki, A., Wolf, T.: Adaptive service-chain routing for virtual network functions in software-defined networks. In: Proceedings of the 2016 Workshop on Hot Topics in Middleboxes and Network Function Virtualization, 22 August 2016, pp. 32–37 (2016)

    Google Scholar 

  11. Sauvanaud, C., Lazri, K., Kaâniche, M., Kanoun, K.: Anomaly detection and root cause localization in virtual network functions. In: 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), 23 October 2016, pp. 196–206. IEEE (2016)

    Google Scholar 

  12. Carpio, F., Jukan, A., Pries, R.: Balancing the migration of virtual network functions with replications in data centers. In: NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, 23 April 2018, pp. 1–8. IEEE (2018)

    Google Scholar 

  13. Kim, D., Kim, Y.H., Kim, K.H., Gil, J.M.: Cloud-centric and logically isolated virtual network environment based on software-defined wide area network. Sustainability 9(12), 2382 (2017)

    Article  Google Scholar 

  14. Cao, H., Zhu, H., Yang, L.: Collaborative attributes and resources for single-stage virtual network mapping in network virtualization. J. Commun. Netw. 22(1), 61–71 (2019)

    Article  Google Scholar 

  15. Moreno-Vozmediano, R., Montero, R.S., Huedo, E., Llorente, I.M.: Cross-site virtual network in cloud and fog computing. IEEE Cloud Comput. 4(2), 46–53 (2017)

    Article  Google Scholar 

  16. Su, Y., Meng, X., Kang, Q., Han, X.: Dynamic virtual network reconfiguration method for hybrid multiple failures based on weighted relative entropy. Entropy 20(9), 711 (2018)

    Article  Google Scholar 

  17. Liu, X., Medhi, D.: Dynamic virtual network restoration with optimal standby virtual router selection. In: NOMS 2016–2016 IEEE/IFIP Network Operations and Management Symposium, 25 April 2016, pp. 973–978. IEEE (2016)

    Google Scholar 

  18. Maswood, M.M., Develder, C., Madeira, E., Medhi, D.: Dynamic virtual network traffic engineering with energy efficiency in multi-location data center networks. In: 2016 28th International Teletraffic Congress (ITC 28), 12 September 2016, vol. 1, pp. 10–17. IEEE (2016)

    Google Scholar 

  19. Chandramouli, R., Chandramouli, R.: Secure virtual network configuration for virtual machine (VM) protection. NIST Spec. Publ. 7(800), 125B (2016)

    Google Scholar 

  20. Alaluna, M., Ferrolho, L., Figueira, J.R., Neves, N., Ramos, F.M.: Secure virtual network embedding in a multi-cloud environment. arXiv preprint arXiv:1703.01313, March 2017

  21. Fischer, A., De Meer, H.: Generating virtual network embedding problems with guaranteed solutions. IEEE Trans. Netw. Serv. Manage. 13(3), 504–517 (2016)

    Article  Google Scholar 

  22. Pei, J., Hong, P., Xue, K., Li, D.: Efficiently embedding service function chains with dynamic virtual network function placement in geo-distributed cloud system. IEEE Trans. Parallel Distrib. Syst. 30(10), 2179–2192 (2018)

    Article  Google Scholar 

  23. Alzahrani, A.S., Shahin, A.A.: Energy-aware virtual network embedding approach for distributed cloud. arXiv preprint arXiv:1710.11590, 31 October 2017

  24. Maswood, M.M., Develder, C., Madeira, E., Medhi, D.: Energy-efficient dynamic virtual network traffic engineering for north-south traffic in multi-location data center networks. Comput. Netw. 9(125), 90–102 (2017)

    Article  Google Scholar 

  25. Comi, P., et al.: Hardware-accelerated high-resolution video coding in virtual network functions. In: 2016 European Conference on Networks and Communications (EuCNC), 27 June 2016, pp. 32–36. IEEE (2016)

    Google Scholar 

  26. Savi, M., Tornatore, M., Verticale, G.: Impact of processing-resource sharing on the placement of chained virtual network functions. IEEE Trans. Cloud Comput. (2019)

    Google Scholar 

  27. Dräxler, S., Karl, H., Mann, Z.Á.: Jasper: joint optimization of scaling, placement, and routing of virtual network services. IEEE Trans. Netw. Serv. Manage. 15(3), 946–960 (2018)

    Article  Google Scholar 

  28. AbdelSalam, A., Clad, F., Filsfils, C., Salsano, S., Siracusano, G., Veltri, L.: Implementation of virtual network function chaining through segment routing in a Linux-based NFV infrastructure. In: 2017 IEEE Conference on Network Softwarization (NetSoft) 3 July 2017, pp. 1–5. IEEE (2017)

    Google Scholar 

  29. Li, H., Ota, K., Dong, M.: LS-SDV: virtual network management in large-scale software-defined IoT. IEEE J. Sel. Areas Commun. 37(8), 1783–1793 (2019)

    Article  Google Scholar 

  30. Arouk, O., Nikaein, N., Turletti, T.: Multi-objective placement of virtual network function chains in 5G. In: 2017 IEEE 6th International Conference on Cloud Networking (CloudNet), 25 September 2017, pp. 1–6. IEEE (2017)

    Google Scholar 

  31. Esposito, F., Di Paola, D., Matta, I.: On distributed virtual network embedding with guarantees. IEEE/ACM Trans. Networking 24(1), 569–582 (2014)

    Article  Google Scholar 

  32. Gupta, A., Habib, M.F., Mandal, U., Chowdhury, P., Tornatore, M., Mukherjee, B.: On service-chaining strategies using virtual network functions in operator networks. Comput. Netw. 14(133), 1–6 (2018)

    Google Scholar 

  33. Gao, M., Addis, B., Bouet, M., Secci, S.: Optimal orchestration of virtual network functions. Comput. Netw. 4(142), 108–127 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant no. 62072078, and the Natural Science Foundation of Hunan Province, China under Grant no. 2018JJ3191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangfeng Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Z., Zhang, H., Sun, S., Gao, C., Li, Y., Li, X. (2021). FDRA: Fully Distributed Routing Architecture for Private Virtual Network in Public Cloud. In: Ning, L., Chau, V., Lau, F. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2020. Communications in Computer and Information Science, vol 1362. Springer, Singapore. https://doi.org/10.1007/978-981-16-0010-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0010-4_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0009-8

  • Online ISBN: 978-981-16-0010-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics