Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancement of Region of Interest from a Single Backlit Image with Multiple Features

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

Backlit images are a combination of dark and bright regions and the objects in the image generally appear to be dark for human perception. The region of interest (ROI) in general confines to the object(s) present in the image or some regions of the image. Such ROI in backlit images have low contrast and it is difficult for visualization. Enhancement of ROI in backlit images is necessary in order to view the contents properly. In this paper, a novel and simple approach for the enhancement of ROI of backlit images is proposed. This approach considers several features including tone mappings, exposedness, gradient, median filtering, etc. and finally, the fusion of the results has been done. The novel contribution in the proposed method, though seems to be trivial, attained best results without applying pyramid based operations namely Laplacian pyramid and Gaussian pyramid. Efficacy of the proposed method is evident from the experimental results which confirm that the proposed approach gives better results both qualitatively (visualization) and quantitatively (objective evaluation) compared to the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buades, A., Lisani, J.L., Petro, A.B., Sbert, C.: Backlit images enhancement using global tone mappings and image fusion. IET Image Process. 14(2), 211–219 (2019)

    Article  Google Scholar 

  2. Celik, T.: Spatial entropy-based global and local image contrast enhancement. IEEE Trans. Image Process. 23(12), 5298–5308 (2014)

    Article  MathSciNet  Google Scholar 

  3. Chouhan, R., Biswas, P.K., Jha, R.K.: Enhancement of low-contrast images by internal noise-induced fourier coefficient rooting. Sign. Image Video Process. 9(1), 255–263 (2015)

    Article  Google Scholar 

  4. Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Sign. Process. 129, 82–96 (2016)

    Article  Google Scholar 

  5. Gottschlich, C.: Curved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancement. IEEE Trans. Image Process. 21(4), 2220–2227 (2011)

    Article  MathSciNet  Google Scholar 

  6. Hessel, C.: An implementation of the exposure fusion algorithm. Image Process. OnLine 8, 369–387 (2018)

    Article  Google Scholar 

  7. Huang, H., Tao, H., Wang, H.: A convolutional neural network based method for low-illumination image enhancement. In: Proceedings of the 2nd International Conference on Artificial Intelligence and Pattern Recognition, pp. 72–77 (2019)

    Google Scholar 

  8. Im, J., Yoon, I., Hayes, M.H., Paik, J.: Dark channel prior-based spatially adaptive contrast enhancement for back lighting compensation. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2464–2468. IEEE (2013)

    Google Scholar 

  9. Jha, R.K., Chouhan, R., Aizawa, K., Biswas, P.K.: Dark and low-contrast image enhancement using dynamic stochastic resonance in discrete cosine transform domain. APSIPA Transactions on Signal and Information Processing, vol. 2 (2013)

    Google Scholar 

  10. Li, C., Liu, J., Liu, A., Wu, Q., Bi, L.: Global and adaptive contrast enhancement for low illumination gray images. IEEE Access 7, 163395–163411 (2019)

    Article  Google Scholar 

  11. Li, Z., Wu, X.: Learning-based restoration of backlit images. IEEE Trans. Image Process. 27(2), 976–986 (2018)

    Article  MathSciNet  Google Scholar 

  12. Liu, S., Zhang, Y.: Detail-preserving underexposed image enhancement via optimal weighted multi-exposure fusion. IEEE Trans. Consum. Electron. 65(3), 303–311 (2019)

    Article  Google Scholar 

  13. Martorell, O., Sbert, C., Buades, A.: Ghosting-free dct based multi-exposure image fusion. Sign. Process. Image Commun. 78, 409–425 (2019)

    Article  Google Scholar 

  14. Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. In: Computer Graphics Forum, vol. 28, pp. 161–171. Wiley Online Library (2009)

    Google Scholar 

  15. Morel, J.M., Petro, A.B., Sbert, C.: Screened poisson equation for image contrast enhancement. Image Process. OnLine 4, 16–29 (2014)

    Article  Google Scholar 

  16. Niu, Y., Wu, X., Shi, G.: Image enhancement by entropy maximization and quantization resolution upconversion. IEEE Trans. Image Process. 25(10), 4815–4828 (2016)

    Article  MathSciNet  Google Scholar 

  17. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  18. Ren, Y., Ying, Z., Li, T.H., Li, G.: Lecarm: low-light image enhancement using the camera response model. IEEE Trans. Circ. Syst. Video Technol. 29(4), 968–981 (2018)

    Article  Google Scholar 

  19. Rivera, A.R., Ryu, B., Chae, O.: Content-aware dark image enhancement through channel division. IEEE Trans. Image Process. 21(9), 3967–3980 (2012)

    Article  MathSciNet  Google Scholar 

  20. Singh, H., Kumar, V., Bhooshan, S.: A novel approach for detail-enhanced exposure fusion using guided filter. The Scientific World Journal, vol. 2014 (2014)

    Google Scholar 

  21. Wang, Q., Fu, X., Zhang, X.P., Ding, X.: A fusion-based method for single backlit image enhancement. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4077–4081. IEEE (2016)

    Google Scholar 

  22. Wang, S., Luo, G.: Naturalness preserved image enhancement using a priori multi-layer lightness statistics. IEEE Trans. Image Process. 27(2), 938–948 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wang, W., Wu, X., Yuan, X., Gao, Z.: An experiment-based review of low-light image enhancement methods. IEEE Access 8, 87884–87917 (2020)

    Article  Google Scholar 

  24. Wang, Y.F., Liu, H.M., Fu, Z.W.: Low-light image enhancement via the absorption light scattering model. IEEE Trans. Image Process. 28(11), 5679–5690 (2019)

    Article  MathSciNet  Google Scholar 

  25. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3015–3022 (2017)

    Google Scholar 

  26. Zarie, M., Pourmohammad, A., Hajghassem, H.: Image contrast enhancement using triple clipped dynamic histogram equalisation based on standard deviation. IET Image Process. 13(7), 1081–1089 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. S. S. R. Chandra Mouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, G., Yadav, D.K., Mouli, P.V.S.S.R.C. (2021). Enhancement of Region of Interest from a Single Backlit Image with Multiple Features. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1092-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1091-2

  • Online ISBN: 978-981-16-1092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics