Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identification of Prognostic Signature in Esophageal Cancer Based on Network Analysis

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1363))

  • 690 Accesses

Abstract

Esophageal cancer is the 6th most common cancer in the world with a five-year survival among 15\(\%\) to 25\(\%\) patients. It’s of great significance to identify prognostic signature for precise prediction of patient survival. In this work, we use a network-based approach to identify the disease genes of esophageal cancer. We construct the co-expression networks of normal and cancer samples by interpreting the gene expression profile and further divide the networks into inactivated subnetwork and enhanced subnetwork. Functional enrichment analysis shows that phosphoprotein and acetylation are both enriched in the inactivated genes and enhanced genes. Furthermore, 5 kinesin family members, KIF11, KIF23, KIF18A, KIF18B, and KIF2A, are all found to be significantly enhanced, suggesting that kinesin is crucial in promoting the formation of esophageal cancer. The 11 genes both inactivated and enhanced in the process of tumor development are found to be prognosis-associated and perform well in evaluating the survival of esophageal cancer patients. This study provides us fundamental recognition about the functional dysregulation in esophageal cancer and help to identify the biomarker for the further development of therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, Y., Yu, X., Chen, Q., et al.: Neoadjuvant versus adjuvant treatment: which one is better for resectable esophageal squamous cell carcinoma? World J. Surg. Oncol. 10(1), 1–8 (2012)

    Article  Google Scholar 

  2. Song, Y., Li, L., Qu, Y., et al.: Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509(7498), 91 (2014)

    Article  Google Scholar 

  3. Lin, D., Hao, J., Nagata, Y., et al.: Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat. Genet. 46(5), 467 (2014)

    Article  Google Scholar 

  4. Pennathur, A., Gibson, M.K., Jobe, B.A., et al.: Oesophageal carcinoma. Lancet 381(9864), 400–412 (2013)

    Article  Google Scholar 

  5. Li, D., Zhang, L., Liu, Y., et al.: Specific DNA methylation markers in the diagnosis and prognosis of esophageal cancer. Aging 11(23), 11640–11658 (2019)

    Article  Google Scholar 

  6. Li, Y., Lu, Z., Che, Y., et al.: Immune signature profiling identified predictive and prognostic factors for esophageal squamous cell carcinoma. OncoImmunology 6(11), e1356147 (2017)

    Article  Google Scholar 

  7. Huang, F., Yu, S.: Esophageal cancer: risk factors, genetic association, and treatment. Asian J. Surg. 41(3), 210–215 (2018)

    Article  Google Scholar 

  8. Yi, L., Huang, P., Zou, X., et al.: Integrative stemness characteristics associated with prognosis and the immune microenvironment in esophageal cancer. Pharmacol. Res. 161, 105144 (2020)

    Article  Google Scholar 

  9. Iliuk, A.B., Arrington, J.V., Tao, W.A.: Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications. Electrophoresis 35(24), 3430–3440 (2014)

    Article  Google Scholar 

  10. Chen, I., Xue, L., Hsu, C., et al.: Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl. Acad. Sci. 114, 201618088 (2017)

    Google Scholar 

  11. Yu, M., Gong, J., Ma, M., et al.: Immunohistochemical analysis of human arrest-defective-1 expressed in cancers in vivo. Oncol. Rep. 21(4), 909–915 (2009)

    Google Scholar 

  12. Kalvik, T., Arnesen, T.: Protein \(n\)-terminal acetyltransferases in cancer. Oncogene 32(3), 269 (2013)

    Article  Google Scholar 

  13. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  14. Hartwell, L.H., Hopfield, J.J., Leibler, S., et al.: From molecular to modular cell biology. Nature 402(6761), C47–C52 (1999)

    Article  Google Scholar 

  15. Zhang, L., Chen, Z., Xue, D., et al.: Prognostic and therapeutic value of mitochondrial serine hydroxyl-methyltransferase 2 as a breast cancer biomarker. Oncol. Rep. 36(5), 2489–2500 (2016)

    Article  Google Scholar 

  16. Yang, W., Cho, H., Shin, H., et al.: Accumulation of cytoplasmic CDK1 is associated with cancer growth and survival rate in epithelial ovarian cancer. Oncotarget 7(31), 49481 (2016)

    Article  Google Scholar 

  17. Choi, E.J., Kim, M.S., Yoo, N.J., et al.: Frameshift mutation of ASPM gene in colorectal cancers with regional heterogeneity. Pathol. Oncol. Res. 22(4), 877–879 (2016)

    Article  Google Scholar 

  18. Harms, K.L., Chubb, H., Zhao, L., et al.: Increased expression of EZH2 in Merkel cell carcinoma is associated with disease progression and poorer prognosis. Hum. Pathol. 67, 78–84 (2017)

    Article  Google Scholar 

  19. Jeong, D., Kim, H., Ban, S., et al.: Karyopherin \(\alpha \)-2 is a reliable marker for identification of patients with high-risk stage II colorectal cancer. J. Cancer Res. Clin. Oncol. 143(12), 2493–2503 (2017)

    Article  Google Scholar 

  20. Zhao, Y., Shen, L., Huang, X., et al.: High expression of Ki-67 acts a poor prognosis indicator in locally advanced nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 494(1–2), 390–396 (2017)

    Google Scholar 

  21. Ogata, H., Goto, S., Sato, K., et al.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27(1), 29–34 (2000)

    Article  Google Scholar 

  22. Su, H., Hu, N., Yang, H.H., et al.: Global gene expression profiling and validation in esophageal squamous cell carcinoma (ESCC) and its association with clinical phenotypes. Clin. Cancer Res. 17(9), 2955–66 (2011)

    Article  Google Scholar 

  23. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  25. Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895 (2005)

    Article  Google Scholar 

  26. Huang, D.W., Sherman, B.T., Lempicki, R.A.: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, J., Huang, Y. (2021). Identification of Prognostic Signature in Esophageal Cancer Based on Network Analysis. In: Pan, L., Pang, S., Song, T., Gong, F. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2020. Communications in Computer and Information Science, vol 1363. Springer, Singapore. https://doi.org/10.1007/978-981-16-1354-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1354-8_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1353-1

  • Online ISBN: 978-981-16-1354-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics