Abstract
This paper investigates the multi Unmanned Aerial Vehicle (UAV) target tracking mission based on the vision and communication information. Firstly, the multiple UAV platform is established to achieve the target tracking mission. Furthermore, utilizing deep learning algorithm, target detection is accomplished based on UAV vision. Thirdly, each UAV could communicate with others to share target information and track it by maintaining the certain distance. Finally, the effectiveness of multi UAV target tracking system is verified on the actual test.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, Z., Liu, Y., Walker, R., et al.: Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform. Mach. Vis. Appl. 21(5), 677–686 (2010)
Metni, N., Hamel, T.: A UAV for bridge inspection: visual servoing control law with orientation limits. Autom. Constr. 17(1), 3–10 (2007)
Krajník, T., Nitsche, M., Pedre, S., et al.: A simple visual navigation system for an UAV. In: International Multi-Conference on Systems, Signals & Devices, pp. 1–6. IEEE (2012)
Zhang, S., Wang, X.: Human detection and object tracking based on Histograms of Oriented Gradients. In: 2013 Ninth International Conference on Natural Computation (ICNC) (2013)
Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vision 61(1), 55–79 (2005)
Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Trans. Comput. 100(1), 67–92 (1973)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)
Xie, G., Li, X., Peng, X., et al.: Estimating the probability density function of remaining useful life for wiener degradation process with uncertain parameters. Int. J. Control Autom. Syst. 17(11), 2734–2745 (2019)
Xie, G., Sun, L., Wen, T., et al.: Adaptive transition probability matrix-based parallel IMM algorithm. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 2980–2989 (2019)
Gavish, M., Weiss, A.J.: Performance analysis of bearing-only target location algorithms. IEEE Trans. Aerosp. Electron. Syst. 28(3), 817–828 (1992)
Liu, C., Song, Y., Guo, Y., et al.: Vision information and laser module based UAV target tracking. In: IECON 2019–45th Annual Conference of the IEEE Industrial Electronics Society. IEEE, vol. 1, pp. 186–191 (2019)
Bradski, G.R.: Computer vision face tracking for use in a perceptual user interface (1998)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2011)
Huang, S., Hong, J.: Moving object tracking system based on camshift and Kalman filter. In: 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 1423–1426. IEEE (2011)
Wei, D.: Multi-target visual positioning technology of four-wing UAV based on VI-SLAM. Comput. Measur. Control. 27(11), 224–227 (2019)
Guerra, E., Munguía, R., Grau, A.: UAV visual and laser sensors fusion for detection and positioning in industrial applications. Sensors 18(7), 2071 (2018)
Dong, X., Yu, B., Shi, Z., et al.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2014)
Jiao, R., Wang, Z., Chu, R., et al.: An intuitional end-to-end human-UAV interaction system for field exploration. Front. Neurorobotics 13, 117 (2019)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, C., Wang, D., Tang, Y., Xu, B. (2021). Multi UAV Target Tracking Based on the Vision and Communication Information. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_58
Download citation
DOI: https://doi.org/10.1007/978-981-16-2336-3_58
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-2335-6
Online ISBN: 978-981-16-2336-3
eBook Packages: Computer ScienceComputer Science (R0)