Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SDGen: A Scalable, Reproducible and Flexible Approach to Generate Real World Cyber Security Datasets

  • Conference paper
  • First Online:
Ubiquitous Security (UbiSec 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1557))

Included in the following conference series:

  • 879 Accesses

Abstract

Real world cyber security datasets are essential for developing and evaluating new techniques to counter cyber attacks. Ideally, these datasets should represent modern network infrastructures with up-to-date cyber attacks. However, existing datasets commonly used by researchers are either synthetic, unscalable or easily outdated due to the dynamic network infrastructure and evolving nature of cyber attacks. In this paper, we introduce a security dataset generator (SDGen) which focuses on a scalable, reproducible and flexible approach to generate real world datasets for detection and response against cyber attacks. We implement SDGen within a virtual environment using DetectionLab, ELK (Elasticsearch, Logstash, Kibana) stack with Beats and AttackIQ (a security control validation platform). This implementation in fact provides a proof-of-concept (POC) of SDGen to demonstrate the dataset generation of an organisation being compromised by several types of Ransomware. We showcase that our proposed dataset generator, SDGen, provides scalability, reproducibility and flexibility in generating cyber security datasets by modifying the configurations in DetectionLab, VagrantFiles and launching different types of attacks in AttackIQ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-rimy, B.A.S., Maarof, M.A., Shaid, S.Z.M.: Ransomware threat success factors, taxonomy, and countermeasures: a survey and research directions. Comput. Secur. 74, 144–166 (2018)

    Article  Google Scholar 

  2. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Towards generating real-life datasets for network intrusion detection. Int. J. Netw. Secur. 17(6), 683–701 (2015)

    Google Scholar 

  3. Elasticsearch B.V.: Beats. https://www.elastic.co/beats/. Accessed 30 Aug 2021

  4. Elasticsearch B.V.: Elasticsearch. https://www.elastic.co/elasticsearch/. Accessed 31 Aug 2021

  5. Elasticsearch B.V.: Kibana. https://www.elastic.co/kibana/. Accessed 31 Aug 2021

  6. Elasticsearch B.V.: Logstash. https://www.elastic.co/logstash/. Accessed 30 Aug 2021

  7. Cohen, I., Herzog, B.: Ryuk ransomware: a targeted campaign break-down (2018)

    Google Scholar 

  8. The Mitre Corporation: Ryuk, May 2020. https://attack.mitre.org/software/S0446/. Accessed 07 Sept 2021

  9. Cunningham, R.K., et al.: Evaluating intrusion detection systems without attacking your friends: the 1998 DARPA intrusion detection evaluation. Technical report, Massachusetts Institute of Technology, Lexington, Lincoln Laboratory (1999)

    Google Scholar 

  10. DetectionLab. https://detectionlab.network

  11. Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation framework for intrusion detection dataset. In: 2016 International Conference on Information Science and Security (ICISS), pp. 1–6. IEEE (2016)

    Google Scholar 

  12. Haines, J.W., Lippmann, R.P., Fried, D.J., Zissman, M., Tran, E.: 1999 DARPA intrusion detection evaluation: design and procedures. Technical report, Massachusetts Institute of Technology, Lexington, Lincoln Laboratory (2001)

    Google Scholar 

  13. Hashimoto, M.: Vagrant: Up and Running: Create and Manage Virtualized Development Environments. O’Reilly Media Inc., Sebastopol (2013)

    Google Scholar 

  14. Kozik, R., Choraś, M., Ficco, M., Palmieri, F.: A scalable distributed machine learning approach for attack detection in edge computing environments. J. Parallel Distrib. Comput. 119, 18–26 (2018)

    Article  Google Scholar 

  15. Liu, L., De Vel, O., Han, Q.L., Zhang, J., Xiang, Y.: Detecting and preventing cyber insider threats: a survey. IEEE Commun. Surv. Tutor. 20(2), 1397–1417 (2018)

    Article  Google Scholar 

  16. Long, C.: Introducing: Detection Lab. https://medium.com/@clong/introducing-detection-lab-61db34bed6ae

  17. Mighan, S.N., Kahani, M.: A novel scalable intrusion detection system based on deep learning. Int. J. Inf. Secur. 20(3), 387–403 (2020). https://doi.org/10.1007/s10207-020-00508-5

    Article  Google Scholar 

  18. Mixon, E.: Top 10 ransomware attacks of 2021 (so far) - blumira. https://www.blumira.com/ransomware-attacks-2021/

  19. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)

    Google Scholar 

  20. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion detection data sets. Comput. Secur. 86, 147–167 (2019)

    Article  Google Scholar 

  21. Sharafaldin, I., Gharib, A., Lashkari, A.H., Ghorbani, A.A.: Towards a reliable intrusion detection benchmark dataset. Softw. Netw. 2018(1), 177–200 (2018)

    Google Scholar 

  22. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, vol. 1, pp. 108–116 (2018)

    Google Scholar 

  23. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)

    Article  Google Scholar 

  24. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, pp. 29–36 (2011)

    Google Scholar 

  25. Strom, B.E., Applebaum, A., Miller, D.P., Nickels, K.C., Pennington, A.G., Thomas, C.B.: MITRE ATT&CK: design and philosophy. Technical report (2018)

    Google Scholar 

  26. Yadav, T., Rao, A.M.: Technical aspects of cyber kill chain. In: Abawajy, J.H., Mukherjea, S., Thampi, S.M., Ruiz-Martínez, A. (eds.) SSCC 2015. CCIS, vol. 536, pp. 438–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22915-7_40

    Chapter  Google Scholar 

  27. Zheng, M., Robbins, H., Chai, Z., Thapa, P., Moore, T.: Cybersecurity research datasets: taxonomy and empirical analysis. In: 11th USENIX Workshop on Cyber Security Experimentation and Test (CSET 2018) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail M. Y. Koay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koay, A.M.Y., Xie, M., Ko, R.K.L., Sterner, C., Choi, T., Dong, N. (2022). SDGen: A Scalable, Reproducible and Flexible Approach to Generate Real World Cyber Security Datasets. In: Wang, G., Choo, KK.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds) Ubiquitous Security. UbiSec 2021. Communications in Computer and Information Science, vol 1557. Springer, Singapore. https://doi.org/10.1007/978-981-19-0468-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0468-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0467-7

  • Online ISBN: 978-981-19-0468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics