Abstract
In view of the dynamic characteristics for dual active bridge (DAB) converters in single phase shift control, a control method based on active disturbance rejection control (ADRC) control with output current and input voltage feed-forward is proposed. The basic structure and control method of the linear active disturbance rejection control (LADRC) are introduced and analysis of the dependence of the method on the inductance parameters and the stability of the control system in this paper. Finally, the proposed control method and PI control are compared and validated in a simulation-based platform. Experiments show that the converter responds three times faster than conventional PI control during sudden load changes and is insensitive to inductor parameter deviations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lu, J., Wang, Y., Wang, H., Wei, M., Zhou, Y., Zhang, Y.: Modulation strategy for improving the voltage gain of the dual-active-bridge converter. IET Power Electron. 13(8), 1630–1638 (2020). https://doi.org/10.1049/iet-pel.2019.1250
Zhan, H., et al.: Model predictive control of input-series output-parallel dual active bridge converters based dc transformer. IET Power Electron. 13(6), 1144–1152 (2020). https://doi.org/10.1049/iet-pel.2019.1061
Hou, N., Song, W., Wu, M.: Minimum-current-stress scheme of dual active bridge dccdc converter with unified phase-shift control. IEEE Trans. Power Electron. 31(12), 8552–8561 (2016). https://doi.org/10.1109/TPEL.2016.2521410
Zhao, B., Yu, Q., Sun, W.: Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid. IEEE Trans. Power Electron. 27(11), 4667–4680 (2012). https://doi.org/10.1109/TPEL.2011.2180928
Hou, N., Li, Y.: A direct current control scheme with compensation operation and circuit-parameter estimation for full-bridge dccdc converter. IEEE Trans. Power Electron. 36(1), 1130–1142 (2021). https://doi.org/10.1109/TPEL.2020.3002737
Bai, H., Mi, C., Wang, C., Gargies, S.: The dynamic model and hybrid phase-shift control of a dual-active-bridge converter, pp. 2840–2845 (2008). https://doi.org/10.1109/IECON.2008.4758409
Bai, H., Nie, Z., Mi, C.C.: Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional dccdc converters. IEEE Trans. Power Electron. 25(6), 1444–1449 (2010). https://doi.org/10.1109/TPEL.2009.2039648
Guo, L.: Implementation of digital pid controllers for DC-DC converters using digital signal processors, pp. 306–311 (2007). https://doi.org/10.1109/EIT.2007.4374445
Kapat, S., Krein, P.T.: Pid controller tuning in a DC-DC converter: A geometric approach for minimum transient recovery time, pp. 1–6 (2010). https://doi.org/10.1109/COMPEL.2010.5562367
Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)
Gao, Z.: Active disturbance rejection control: a paradigm shift in feedback control system design, p. 7 (2006). https://doi.org/10.1109/ACC.2006.1656579
Song, W., Hou, N., Wu, M.: Virtual direct power control scheme of dual active bridge DC-DC converters for fast dynamic response. IEEE Trans. Power Electron. 33(2), 1750–1759 (2018). https://doi.org/10.1109/TPEL.2017.2682982
Gao, Z.: Scaling and bandwidth-parameterization based controller tuning 6, 4989–4996 (2003). https://doi.org/10.1109/ACC.2003.1242516
Cao, Y., Zhao, Q., Ye, Y., Xiong, Y.: Adrc-based current control for grid-tied inverters: design, analysis, and verification. IEEE Trans. Industr. Electron. 67(10), 8428–8437 (2020). https://doi.org/10.1109/TIE.2019.2949513
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, Z. et al. (2022). Fast Dynamic Response Based on Active Disturbance Rejection Control of Dual Active Bridge DC-DC Converter. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_11
Download citation
DOI: https://doi.org/10.1007/978-981-19-6142-7_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-6141-0
Online ISBN: 978-981-19-6142-7
eBook Packages: Computer ScienceComputer Science (R0)