Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Broad Learning with Uniform Local Binary Pattern for Fingerprint Liveness Detection

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1637))

Included in the following conference series:

Abstract

Recently, with the widespread application of mobile communication devices, fingerprint identification is the most prevalent in all types of mobile computing. While they bring a huge convenience to our lives, the resulting security and privacy issues have caused widespread concern. Fraudulent attack using forged fingerprint is one of the typical attacks to realize illegal intrusion. Thus, fingerprint liveness detection (FLD) for True or Fake fingerprints is very essential. This paper proposes a novel fingerprint liveness detection method based on broad learning with uniform local binary pattern (ULBP). Compared to convolutional neural networks (CNN), training time is drastically reduced. Firstly, the region of interest of the fingerprint image is extracted to remove redundant information. Secondly, texture features in fingerprint images are extracted via ULBP descriptors as the input to the broad learning system (BLS). ULBP reduces the variety of binary patterns of fingerprint features without losing any key information. Finally, the extracted features are fed into the BLS for training. The BLS is a flat network, which transfers and places the original input as a mapped feature in feature nodes, generalizing the structure in augmentation nodes. Experiments show that in Livdet 2011 and Livdet 2013 datasets, the average training time is about 1 s and the performance of identifying real and fake fingerprints is effect. Compared to other advanced models, our method is faster and more miniature.

C. Yuan and M. Chen—Contributed equally to this work and should be considered co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan, C., Yu, P., Xia, Z., Sun, X., Wu, Q.M.J.: FLD-SRC: fingerprint liveness detection for AFIS based on spatial ridges continuity. IEEE J. Selected Topics Signal Process. 16, 817–827 (2022). https://doi.org/10.1109/JSTSP.2022.3174655

    Article  Google Scholar 

  2. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of fingerprint recognition. Ch Synth. Fingerprint Gener. 33(5–6), 1314 (2005). https://doi.org/10.1007/978-1-84882-254-2

    Article  MATH  Google Scholar 

  3. Jia, X., et al.: Multi-scale local binary pattern with filters for spoof fingerprint detection. Inf. Sci. 268, 91–102 (2014). https://doi.org/10.1016/j.ins.2013.06.041

    Article  Google Scholar 

  4. Sousedik, C., Busch, C.: Presentation attack detection methods for fingerprint recognition systems: a survey. Iet Biometrics 3(4), 219–233 (2014). https://doi.org/10.1049/iet-bmt.2013.0020

    Article  Google Scholar 

  5. Schuckers, S.A.: Spoofing and anti-spoofing measures. Inf. Secur. Tech. Rep. 7(4), 56–62 (2002). https://doi.org/10.1016/S1363-4127(02)

    Article  Google Scholar 

  6. Marcialis, G.L., et al.: First international fingerprint liveness detection competition—LivDet 2009. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 12–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04146-4_4

    Chapter  Google Scholar 

  7. Yambay, D., Ghiani, L., P. Denti, P., Marcialis, G.L., Roli, F., Schuckers, S.: Livdet 2011 - fingerprint liveness detection competition 2011. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 208–215 (2012). https://doi.org/10.1109/ICB.2012.6199810

  8. Cappelli, R., Ferrara, M., Franco, A., Maltoni, D.: Fingerprint verification competition 2006. Biometric Technol. Today 15(7–8), 7–9 (2007). https://doi.org/10.1016/S0969-4765(07)70140-6

    Article  Google Scholar 

  9. Meyer, H.: Six biometric devices point the finger at security. Comput.Secur. 17(5), 410–411 (1998). https://doi.org/10.1016/S0167-4048(98)80063-1

    Article  Google Scholar 

  10. Nikam, S.B., Agarwal, S.: Texture and wavelet-based spoof fingerprint detection for fingerprint biometric systems. In: First International Conference on Emerging Trends in Engineering and Technology 2008, pp. 675–680 (2008). https://doi.org/10.1109/ICETET.2008.134

  11. Putte, T., Keuning, J.: Biometrical fingerprint recognition: don’t get your fingers burned. In: Smart Card Research and Advanced Applications, pp. 289–303 (2000)

    Google Scholar 

  12. Drahanský, M., Nötzel, R., Wolfgang, F.: Liveness detection based on fine movements of the fingertip surface. In: Proceedings of the 2006 IEEE Workshop on Information Assurance, pp. 42–47 (2006). https://doi.org/10.1109/iaw.2006.1652075

  13. Kallo, P., Kiss, I., Podmaniczky, A., Talosi, J.: Detector for recognizing the living character of a finger in a fingerprint recognizing apparatus. US6175641B1 (2001)

    Google Scholar 

  14. 4 Abhyankar, A.S., Schuckers, S.C.: A wavelet-based approach to detecting liveness in fingerprint scanners. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5404 (2004). https://doi.org/10.1117/12.542939

  15. Schuckers, S., Abhyankar, A.: Detecting liveness in fingerprint scanners using wavelets: Results of the test dataset. In: Biometric Authentication, ECCV International Workshop, Bioaw, Prague, Czech Republic, May, vol. 3087 (2004). https://doi.org/10.1007/978-3-540-25976-3_10

  16. ) Zhang, Y., Tian, J., Chen, X.: Fake finger detection based on thin-plate spline distortion model. in: Advances in Biometrics, International Conference, ICB 2007, Seoul, Korea, August 27–29, 2007, Proceedings, vol. 4642 (2007). https://doi.org/10.1007/978-3-540-74549-5_78

  17. Moon, Y.S., Chen, J.S., Chan, K.C., So, K., Woo, K.C.: Wavelet based 545 fingerprint liveness detection. Electron. Lett. 41(20), 1112–1113 (2005). https://doi.org/10.1049/el:20052577

    Article  Google Scholar 

  18. Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: Fake finger detection by skin distortion analysis. IEEE Trans. Inf. Forensics Secur. 1(3), 360–373 (2006). https://doi.org/10.1109/TIFS.2006.879289

    Article  Google Scholar 

  19. Manivanan, N., Memon, S., Balachandran, W.: Automatic detection of active sweat pores of fingerprint using highpass and correlation filtering. Electron. Lett. 46(18), 1268–1269 (2010). https://doi.org/10.1049/el.2010.1549

    Article  Google Scholar 

  20. Nikam, S.B., Agarwal, S.: Local binary pattern and wavelet-based spoof fingerprint detection. Int. J. Biometrics 1(2), 141–159 (2008). https://doi.org/10.1504/IJBM.2008.020141

    Article  Google Scholar 

  21. Kannala, J., Rahtu, E.: BSIF: binarized statistical image features. In: 2012 21st International Conference on Pattern Recognition (ICPR). IEEE (2012)

    Google Scholar 

  22. Ghiani, L., Marcialis, G.L., Roli, F.: Fingerprint liveness detection by local phase quantization. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 537–540 (2012)

    Google Scholar 

  23. . Mohan, L.S., James, J.: Fingerprint spoofing detection using hog and local binary pattern (2017). https://doi.org/10.17148/IJARCCE.2017.64111

  24. Xia, Z., Yuan, C., Lv, R., Sun, X., Xiong, N.N., Shi, Y.-Q.: A novel weber local binary descriptor for fingerprint liveness detection. IEEE Trans. Syst. Man Cybern. Syst. 50(4), 1526–1536 (2020). https://doi.org/10.1109/TSMC.2018.2874281

    Article  Google Scholar 

  25. Mehboob, R., Dawood, H., Dawood, H., Ilyas, M.U., Guo, P., Banjar, A.: Live fingerprint detection using magnitude of perceived spatial stimuli and local phase information. J. Electron. Imaging 27(05), 053038 (2018). https://doi.org/10.1117/1.JEI.27.5.053038

    Article  Google Scholar 

  26. Nogueira, R.F., de Alencar Lotufo, R., Machado, R.C.: Fingerprint liveness detection using convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 11(6), 1206–1213 (2016). https://doi.org/10.1109/TIFS.2016.2520880

    Article  Google Scholar 

  27. Kim, S., Park, B., Song, B.S., Yang, S.: Deep belief network based statistical feature learning for fingerprint liveness detection. Pattern Recogn. Lett. 77, 58–65 (2016). https://doi.org/10.1016/j.patrec.2016.03.015

    Article  Google Scholar 

  28. Yuan, C., Xia, Z., Jiang, L., Wu, J., Sun, X.: Fingerprint liveness detection using an improved CNN with image scale equalization. IEEE Access 7, 26953–26966 (2019)

    Article  Google Scholar 

  29. Zhang, Y., Shi, D., Zhan, X., et al.: Slim-ResCNN: a deep residual convolutional neural network for fingerprint liveness detection. IEEE Access 7, 91476–91487 (2019)

    Article  Google Scholar 

  30. Banerjee, S., Chaudhuri, S.: DeFraudNet: End2End fingerprint spoof detection using patch level attention. In: Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, pp. 2684–2693 (2020). https://doi.org/10.1109/WACV45572.2020.9093397

  31. . Wang, Y., Mu, Z. Zeng, H.: Block-based and multi-resolution methods for ear recognition using wavelet transform and uniform local binary patterns. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4 (2008). https://doi.org/10.1109/ICPR.2008.4761854

  32. Chen, C.L.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2018). https://doi.org/10.1109/TNNLS.2017.2716952

    Article  MathSciNet  Google Scholar 

  33. Ghiani, L., et al.: Livdet 2013 fingerprint liveness detection competition 2013. In: International Conference on Biometrics (ICB) 2013, pp. 1–6 (2013). https://doi.org/10.1109/ICB.2013.6613027

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under grant 62102189; by the Jiangsu Basic Research Programs-Natural Science Foundation under grant BK20200807; by the Research Startup Foundation of NUIST under grant 2020r015; by the Public Welfare Technology and Industry Project of Zhejiang Provincial Science Technology Department under grant LGF21F020006; by the Key Laboratory of Public Security Information Application Based on Big-Data Architecture, Ministry of Public Security under grant 2021DSJSYS006; by NUDT Scientific Research Program under grant JS21-4; by the 2022 Excellent Undergraduate Graduation Design (Paper) support program of NUIST under grant 201983290123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengsheng Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, M., Yuan, C., Li, X., Zhou, Z. (2022). Broad Learning with Uniform Local Binary Pattern for Fingerprint Liveness Detection. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6142-7_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6141-0

  • Online ISBN: 978-981-19-6142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics