Abstract
In this paper, we present Finite Quantified Linear Temporal Logic (FQLTL), a new formal specification language which extends Linear Temporal Logic (LTL) with quantifiers over finite domains. Explicitly, FQLTL leverages quantifiers and predicates to constrain the domains in the system and utilizes temporal operators from LTL to specify properties with time sequences. Compared to LTL, FQLTL is more suitable and accessible to describe the specification with both restricted domains and temporal properties, which can be applied to the scenarios such as railway transition systems. In addition, this paper proposes a methodology to check FQLTL satisfiability, releasing the corresponding checker for potential users to further use. Towards experiments, we show that by applying the logic to the railway transit system, most of the safety specifications can be formalized and several inconsistent specifications are reported through our implemented satisfiability checker.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using syntactic separation. In: Proceedings of the ACM on Programming Languages 3(POPL), pp. 1–30 (2019)
Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_4
Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking-History, Achievements, Perspectives (2008)
Feng, J., et al.: FREPA: an automated and formal approach to requirement modeling and analysis in aircraft control domain. In: ESEC/FSE 2020: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1376–1386 (2020)
Song, F., Wu, Z.: Extending temporal logics with data variable quantifications. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)
Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. AAAI Press (2013)
Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. AAAI Press (2015)
Hird, G.R.: Formal methods in software engineering. In: 9th IEEE/AIAA/NASA Conference on Digital Avionics Systems (2002)
Holzmann, G.J.: The model checker - spin. IEEE Trans. Softw. Eng. 23, 279–295 (1997)
Hustadt, U., Konev, B.: TRP++2.0: a temporal resolution prover. In: International Conference on Automated Deduction-cade (2002)
Kuperberg, D., Brunel, J., Chemouil, D.: On finite domains in first-order linear temporal logic. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 211–226. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_14
Li, J., Zhu, S., Pu, G., Vardi, M.Y.: SAT-based explicit LTL reasoning. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 209–224. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26287-1_13
Li, J., Yao, Y., Pu, G., Zhang, L., He, J.: Aalta: an LTL satisfiability checker over infinite/finite traces. In: The 22nd ACM SIGSOFT International Symposium, pp. 731–734 (2014)
Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL satisfiability checking revisited. In: 2013 20th International Symposium on Temporal Representation and Reasoning (TIME), pp. 91–98 (2013)
Li, J., Zhu, S., Pu, G., Zhang, L., Vardi, M.Y.: SAT-based explicit LTL reasoning and its application to satisfiability checking. Form. Methods Syst. Des. 54(2), 164–190 (2019). https://doi.org/10.1007/s10703-018-00326-5
Michaud, T., Colange, M.: Reactive synthesis from LTL specification with spot. In: Proceedings of the 7th Workshop on Synthesis (2018)
Piribauer, J., Baier, C.B.N.: Quantified linear temporal logic over probabilistic systems with an application to vacuity checking. In: International Conference on Concurrency Theory (2021)
Pnueli, A.: The temporal logic in programs. In: Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer Science, pp. 46–57 (1977)
Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pp. 46–57 (1977). https://doi.org/10.1109/SFCS.1977.32
Putnam, H.: Three-valued logic. The Logico-Algebraic Approach to Quantum Mechanics (1975)
Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73370-6_11
Schwendimann, S.: A new one-pass Tableau calculus for PLTL. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69778-0_28
Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 537–543. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_42
Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_1
Vardi, M.Y.: From church and prior to PSL. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 150–171. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_10
Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6_6
Zhu, S., Giacomo, G.D., Pu, G., Vardi, M.: LTLf synthesis with fairness and stability assumptions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, No. 03, pp. 3088–3095 (2019)
Zhu, W.: Big data on linear temporal logic formulas. In: 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), vol. 4, pp. 544–547 (2021)
Acknowledgment
We thank anonymous reviewers for their helpful comments. This work is supported by Chinese National Key Research and Development Program (Grant No. 2020AAA0107800), Shanghai Trusted Industry Internet Software Collaborative Innovation Center, Shanghai Pujiang Talent Plan (Grant No. 19511103602) and National Natural Science Foundation of China (Grant No. 62002118 and U21B2015).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, Y., Zhang, X., Li, J. (2022). Finite Quantified Linear Temporal Logic and Its Satisfiability Checking. In: Chen, Y., Zhang, S. (eds) Artificial Intelligence Logic and Applications. AILA 2022. Communications in Computer and Information Science, vol 1657. Springer, Singapore. https://doi.org/10.1007/978-981-19-7510-3_1
Download citation
DOI: https://doi.org/10.1007/978-981-19-7510-3_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7509-7
Online ISBN: 978-981-19-7510-3
eBook Packages: Computer ScienceComputer Science (R0)