Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Virtual Drone Control Using Brain-Computer Interface Based on Motor Imagery Brain Magnetic Fields

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1692))

Included in the following conference series:

  • 842 Accesses

Abstract

Brain-computer interfaces (BCIs) based on brain magnetic fields is a novel trend in the field of rehabilitation robotic that could be leveraged for helping the patients who have lost voluntary muscle control to communicate. This study present an experiment of controlling a virtual drone in three-dimensional space using brain magnetic fields induced by left or right hand motor imagery. We applied optically-pumped magnetometers (OPMs) to capture brain magnetic fields, Subjects sat in the magnetically shield room (MSR) comfortably and performed the motor imagery (MI) task corresponded to the cue provided via an brain magnetic fields based BCI system whilst saving the data attached with variable classlabels. Then, we processed the data in time and frequency domain in order to extract the signal feature in form of an event-related desynchronization (ERD) or event-related synchronization (ERS). Furthermore, machine learning was employed to be the identification tool for motor imagery brain magnetic fields and further, controlled a virtual drone flight according to commands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The bridge between QZFM sensor and host computer is UART to USB serial port line.

  2. 2.

    The height of MSR is 1.6 m.

  3. 3.

    https://github.com/weinbe58/QuSpin.

References

  1. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999). https://doi.org/10.1016/s1388-2457(99)00141-8

  2. Iivanainen, J., Zetter, R., Parkkonen, L.: Potential of on-scalp MEG: robust detection of human visual gamma-band responses. Hum. Brain Mapp. 41(1), 150–161 (2020). https://doi.org/10.1002/hbm.24795

    Article  Google Scholar 

  3. Kim, Y.J., Savukov, I.: Ultra-sensitive magnetic microscopy with an optically pumped magnetometer. Sci. Rep. 6(1), 1–7 (2016). https://doi.org/10.1038/srep24773

    Article  Google Scholar 

  4. Hill, R.M., Boto, E., Rea, M., Holmes, N., Leggett, J.: Multi-channel whole-head OPM-MEG: helmet design and a comparison with a conventional system. Neuroimage 219(1), 116995 (2020)

    Article  Google Scholar 

  5. Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413 (1993). https://doi.org/10.1103/RevModPhys.65.413

    Article  Google Scholar 

  6. Osborne, J., Orton, J., Alem, O., Shah, V.: Fully integrated standalone zero field optically pumped magnetometer for biomagnetism. SPIE.Digital Library. California, United States (2018)

    Google Scholar 

  7. Pfurtscheller, G., Andrew, C.: Event-related changes of band power and coherence: methodology and interpretation. J. Clin. Neurophysiol. 16(6), 512 (1999)

    Article  Google Scholar 

  8. Leocani, L., Toro, C., Manganotti, P., Zhuang, P., Hallett, M.: Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 104(3), 199–206 (1997). https://doi.org/10.1016/S0168-5597(96)96051-7

    Article  Google Scholar 

  9. Jingwei, L., Yin, C., Weidong, Z.: 2015 34th Chinese Control Conference (CCC). IEEE, Hangzhou, China (2015)

    Google Scholar 

  10. Jinzhen, L., Fangfang, Y., Hui, X.: Recognition of multi-class motor imagery EEG signals based on convolutional neural network. J. Zhejiang Univ. 55(11), 2054–2066 (2021). https://doi.org/10.3785/j.issn.1008-973X.2021.11.005

    Article  Google Scholar 

  11. Chunning, S., Yong, S., Zhenggao, N.: Deep learning-based method for recognition of motion imagery EEG signal. Transducer Microsyst. Technol. 41(4), 125–128+133 (2022). https://doi.org/10.13873/j.1000-9787(2022)04-0125-04

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghui Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, G., Gai, J., Guo, R., Zhang, G., Lin, Q., Hu, Z. (2023). Virtual Drone Control Using Brain-Computer Interface Based on Motor Imagery Brain Magnetic Fields. In: Ying, X. (eds) Human Brain and Artificial Intelligence. HBAI 2022. Communications in Computer and Information Science, vol 1692. Springer, Singapore. https://doi.org/10.1007/978-981-19-8222-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8222-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8221-7

  • Online ISBN: 978-981-19-8222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics