Abstract
In today’s interconnected society, large volumes of time-series data are usually collected from real-time applications. This data is generally used for data-driven decision-making. With time, changes may emerge in the statistical characteristics of this data - this is also known as concept drift. A concept drift can be detected using a concept drift detector. An ideal detector should detect drift accurately and efficiently. However, these properties may not be easy to achieve. To address this gap, a novel drift detection method WinDrift (WD) is presented in this research. The foundation of WD is the early detection of concept drift using corresponding and hierarchical time windows. To assess drift, the proposed method uses two sample hypothesis tests with Kolmogorov-Smirnov (KS) statistical distance. These tests are carried out on sliding windows configured on multiple hierarchical levels that assess drift by comparing statistical distance between two windows of corresponding time period on each level. To evaluate the efficacy of WD, 4 real datasets and 10 reproducible synthetic datasets are used. A comparison with 5 existing state-of-the-art drift detection methods demonstrates that WinDrift detects drift efficiently with minimal false alarms and has efficient computational resource usage. The synthetic datasets and the WD code designed for this work have been made publicly available at https://github.com/naureenaqvi/windrift.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Intel(R) Xeon(R) CPU i7–9750H 2.60 GHz. System type 64–bit OS, x64-based processor.
References
Alippi, C., Boracchi, G., Roveri, M.: Hierarchical change-detection tests. IEEE Trans. Neural Networks Learn. Syst. 28(2), 246–258 (2016)
Alippi, C., Roveri, M.: Just-in-time adaptive classifiers-part i: detecting nonstationary changes. IEEE Trans. Neural Networks 19(7), 1145–1153 (2008)
Alippi, C., Roveri, M.: Just-in-time adaptive classifiers-part ii: designing the classifier. IEEE Trans. Neural Networks 19(12), 2053–2064 (2008)
Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)
Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the Seventh SIAM International Conference on Data Mining, pp. 135–150. SIAM (2007)
Choulakian, V., Lockhart, R.A., Stephens, M.A.: Cramér-von mises statistics for discrete distributions. Can. J. Stat./La Rev. Can. Statistique, 22, 125–137 (1994)
CSIRO: agriculture flagship. weather stations in Riverina (2021). https://weather.csiro.au/
Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach to detecting changes in multi-dimensional data streams. In: Proceedings Symposium on the Interface of Statistics, Computing Science, and Applications. Citeseer (2006)
Elmore, K.L.: Alternatives to the chi-square test for evaluating rank histograms from ensemble forecasts. Weather Forecast. 20(5), 789–795 (2005)
Frias-Blanco, I., del Campo-Ávila, J., Ramos-Jimenez, G., Morales-Bueno, R., Ortiz-Diaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2014)
Gama, J.a., Žliobait, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR), 46(4), 1–37 (2014)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Habimana, J.R.: Analysis of break-points in financial time series. University of Arkansas (2016)
Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: VLDB, vol. 4, pp. 180–191. Toronto, Canada (2004)
Liu, A.: Concept drift adaptation for learning with streaming data. Ph.D. thesis (2018)
Lu, N., Zhang, G., Lu, J.: Concept drift detection via competence models. Artif. Intell. 209, 11–28 (2014)
Martínez-Camblor, P., Carleos, C., Corral, N.: Cramér-von mises statistic for repeated measures. Revista Colombiana de Estadística 37(1), 45–67 (2014)
Mehmood, H., Kostakos, P., Cortes, M., Anagnostopoulos, T., Pirttikangas, S., Gilman, E.: Concept drift adaptation techniques in distributed environment for real-world data streams. Smart Cities 4(1), 349–371 (2021)
Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: A multi-output streaming framework. J. Mach. Learn. Res. 19(1), 2915–2914 (2018)
Naqvi, N., Rehman, S.U., Islam, M.Z.: A hyperconnected smart city framework: digital resources using enhanced pedagogical techniques. Australas. J. Inf. Syst. 24 (2020)
Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
Pratt, J.W., Gibbons, J.D.: Kolmogorov-Smirnov two-sample tests. In: Concepts of Nonparametric Theory. Springer Series in Statistics, pp. 318–344. Springer, New York (1981). https://doi.org/10.1007/978-1-4612-5931-2_7
PyPI: psutil 5.8.0 (2020). https://pypi.org/project/psutil/
Rahman, M.G., Islam, M.Z.: Adaptive decision forest: an incremental machine learning framework. Pattern Recogn. 122, 108345 (2022)
Raza, H., Prasad, G., Li, Y.: EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments. Pattern Recogn. 48(3), 659–669 (2015)
Shao, J., Ahmadi, Z., Kramer, S.: Prototype-based learning on concept-drifting data streams. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 412–421 (2014)
Siegel, S., Castellan, N.: 2nd edition: Nonparametric statistics for the behavioral sciences (1988)
Van der Vaart, A.W.: Asymptotic Statistics, vol. 3. Cambridge University Press, Cambridge (2000)
Van Rossum, G., Drake Jr, F.L.: Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam (1995)
Wang, H., Abraham, Z.: Concept drift detection for streaming data. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2015)
Watada, J.: Kolmogorov-Smirnov two sample test with continuous fuzzy data, pp. 175–186 (2010)
Webb, G.I., Lee, L.K., Goethals, B., Petitjean, F.: Analyzing concept drift and shift from sample data. Data Min. Knowl. Discov. 32(5), 1179–1199 (2018). https://doi.org/10.1007/s10618-018-0554-1
Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996). https://doi.org/10.1023/A:1018046501280
Yu, S., Abraham, Z.: Concept drift detection with hierarchical hypothesis testing. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 768–776. SIAM (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Naqvi, N., Rehman, S.U., Islam, M.Z. (2022). WinDrift: Early Detection of Concept Drift Using Corresponding and Hierarchical Time Windows. In: Park, L.A.F., et al. Data Mining. AusDM 2022. Communications in Computer and Information Science, vol 1741. Springer, Singapore. https://doi.org/10.1007/978-981-19-8746-5_6
Download citation
DOI: https://doi.org/10.1007/978-981-19-8746-5_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8745-8
Online ISBN: 978-981-19-8746-5
eBook Packages: Computer ScienceComputer Science (R0)