Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Classification of Blinking: An Evaluation of Significant Time-Domain Features

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Abstract

Stroke is one of the most widespread causes of disability-adjusted life-years (DALYs). EEG-based Brain-Computer Interface (BCI) system is a potential solution for the patients to help them regain their mobility. The study aims to classify eye blinks through features extracted from time-domain EEG signals. Six features (mean, standard deviation, root mean square, skewness, kurtosis and peak-to-peak) from five channels (AF3, AF4, T7, T8 and Pz) were collected from five healthy subjects (three male and two female) aged between 22 and 24. The Chi-square (χ2) method was used to identify significant features. Six machine learning models, i.e. Support Vector Machine (SVM)), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB) and Artificial Neural Networks (ANN), were developed based on all the extracted features as well as the identified significant features. The training and test datasets were divided into a ratio of 70:30. It is shown that the classification accuracy of the evaluated classifiers by considering the fifteen features selected through the Chi-square is comparable to that of the selection of all features. The highest classification accuracy was demonstrated via the RF classifier for both cases. The findings suggest that even that with a reduced feature set, a reasonably high classification accuracy could be achieved, i.e., 91% on the test set. This observation further implies the viable implementation of BCI applications with a reduced computational expense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Institute of Health (2017) Malaysian burden of disease and injury study 2009–2014

    Google Scholar 

  2. Suzana S, Kee C, Jamaludin A, Noor Safiza M, Khor G, Jamaiyah H, Geeta A, Ahmad Ali Z, Rahmah R, Ruzita A, Ahmad Fauzi Y (2012) The third national health and morbidity survey. Asia Pacific J Public Heal 24:318–329. https://doi.org/10.1177/1010539510380736

    Article  Google Scholar 

  3. Kooi Cheah W, Peng Hor C, Abdul Aziz Z, Looi I (2016) A review of stroke research in Malaysia from 2000–2014. Med J Malaysia 71

    Google Scholar 

  4. Rashid M, Sulaiman N, Majeed APP, Musa RM, Nasir AFA, Bari BS, Khatun S (2020) Current status, challenges and possible solutions of EEG based brain-computer interface: a comprehensive review. Front Neurorobot 14:25

    Article  Google Scholar 

  5. Ab Patar MNA, Said AF, Mahmud J, Majeed APPA, Razman MA (2014) System integration and control of Dynamic Ankle Foot Orthosis for lower limb rehabilitation. In: 2014 International Symposium on Technology Management and Emerging Technologies (ISTMET), IEEE, pp 82–85

    Google Scholar 

  6. Chai R, Ling SH, San PP, Naik GR, Nguyen TN, Tran Y, Craig A, Nguyen HT (2017) Improving EEG-based driver fatigue classification using sparse-deep belief networks. Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00103

  7. Jin Z, Zhou G, Gao D, Zhang Y (2018) EEG classification using sparse Bayesian extreme learning machine for brain-computer interface. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3735-3

  8. Letchumy J, Rashid M, Musa RM The classification of wink-based EEG signals : the identification of significant time-domain. Springer, Singapore. https://doi.org/10.1007/978-981-15-7309-5

Download references

Acknowledgements

The authors would like to acknowledge University Malaysia Pahang for funding this study via RDU180321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar P. P. Abdul Majeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kai, G.L.J. et al. (2022). The Classification of Blinking: An Evaluation of Significant Time-Domain Features. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_91

Download citation

Publish with us

Policies and ethics