Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Action Recognition Based on Multi-perspective Feature Excitation

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15283))

Included in the following conference series:

  • 171 Accesses

Abstract

Some traditional action recognition methods mainly rely on capturing appearance information to recognize human activities, which in the real world often take place in complex environments, so it becomes a challenge to identify human activities in complex environments accurately. A good way to address this challenge is to excite valuable features from multiple angles (e.g., appearance information, temporal relations and channel relations) for action recognition. Based on this idea, we proposed a Group Excitation (GE) block that excites features from different perspectives along different channel groups in parallel. The GE block enhances the ability to capture complementary information that includes temporal and spatial context, maintaining relatively low computational costs. In particular, we design a set of excitation paths whose axial contexts are dynamically aggregated from other axes to contextualize the feature channel groups. We equip ResNet-50 with the GE block to form a simple but effective GENet with limited extra computational cost. The GENet can capture contextual information from different perspectives, making the network more resilient in recognizing complex human activities. We conducted extensive experiments on Something-Something V1, V2, and UCF101, and GENet has achieved competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  2. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A\(^2\)-nets: double attention networks. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  3. Fan, L., et al.: RubiksNet: learnable 3D-shift for efficient video action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 505–521. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_30

  4. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5842–5850 (2017)

    Google Scholar 

  5. Hao, Y., Zhang, H., Ngo, C.W., He, X.: Group contextualization for video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 928–938 (2022)

    Google Scholar 

  6. He, D., et al.: Stnet: local and global spatial-temporal modeling for action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8401–8408 (2019)

    Google Scholar 

  7. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: STM: spatiotemporal and motion encoding for action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2000–2009 (2019)

    Google Scholar 

  8. Jiang, Z., Zhang, Y., Hu, S.: ESTI: an action recognition network with enhanced spatio-temporal information. Int. J. Mach. Learn. Cybern. 14(9), 3059–3070 (2023)

    Article  Google Scholar 

  9. Li, X., Wang, Y., Zhou, Z., Qiao, Y.: Smallbignet: integrating core and contextual views for video classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1092–1101 (2020)

    Google Scholar 

  10. Li, X., Xie, M., Zhang, Y., Ding, G., Tong, W.: Dual attention convolutional network for action recognition. IET Image Proc. 14(6), 1059–1065 (2020)

    Article  Google Scholar 

  11. Li, X., Shuai, B., Tighe, J.: Directional temporal modeling for action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 275–291. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_17

    Chapter  Google Scholar 

  12. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: Tea: temporal excitation and aggregation for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 909–918 (2020)

    Google Scholar 

  13. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7083–7093 (2019)

    Google Scholar 

  14. Liu, Y., Yuan, J., Tu, Z.: Motion-driven visual tempo learning for video-based action recognition. IEEE Trans. Image Process. 31, 4104–4116 (2022)

    Article  Google Scholar 

  15. Liu, Z., et al.: Teinet: towards an efficient architecture for video recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11669–11676 (2020)

    Google Scholar 

  16. Liu, Z., Wang, L., Wu, W., Qian, C., Lu, T.: Tam: temporal adaptive module for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13708–13718 (2021)

    Google Scholar 

  17. Luo, C., Yuille, A.L.: Grouped spatial-temporal aggregation for efficient action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5512–5521 (2019)

    Google Scholar 

  18. Mahdisoltani, F., Berger, G., Gharbieh, W., Fleet, D., Memisevic, R.: On the effectiveness of task granularity for transfer learning. arXiv preprint arXiv:1804.09235 (2018)

  19. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Google Scholar 

  20. Ryu, S., Hong, S., Lee, S.: Making TSM Better: Preserving Foundational Philosophy for Efficient Action Recognition. ICT Express (2023)

    Google Scholar 

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  22. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  23. Wang, H., Tran, D., Torresani, L., Feiszli, M.: Video modeling with correlation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 352–361 (2020)

    Google Scholar 

  24. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

  25. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 413–431. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_25

    Chapter  Google Scholar 

  26. Wang, Z., She, Q., Smolic, A.: Action-net: multipath excitation for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13214–13223 (2021)

    Google Scholar 

  27. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Yang, W., Cui, Z. (2025). Action Recognition Based on Multi-perspective Feature Excitation. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15283. Springer, Singapore. https://doi.org/10.1007/978-981-96-0122-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0122-6_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0121-9

  • Online ISBN: 978-981-96-0122-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics