Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Decoupling Video Frame Selection Method for Action Recognition

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Abstract

The advanced action recognition technologies have attempted to adopt multimodal architecture based on powerful pretrained models (e.g., visual-text) to achieve higher accuracy. However, visual encoders treat all frames equally, which may lead to (i) loss of key information and (ii) poor robustness, as different video frames may contribute differently to the visual representation. The preliminary experiments show that the assessment of frame features could be highly correlated with the classification accuracy of the visual encoder. Based on this insight, this paper proposes VFS (Video Frame Selection) module to guide the model in selecting video frames, thereby enhancing the action recognition accuracy. Specifically, VFS module selects diverse representative frames through processes including preprocessing, dimensionality reduction, and clustering etc. Additionally, we introduce soft prompt tuning for domain adaptation as advanced design. Experimental results show that the proposed method achieves performance comparable to or better than existing competitive action recognition models on multiple datasets.

This work is supported by Science and Technology Innovation 2030 - Major Project “New Generation Artificial Intelligence (2030)” (2022ZD0116407) and National Natural Science Foundation of China (62101552).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)

    Google Scholar 

  2. Chen, M., Han, X., Zhang, H., Lin, G., Kamruzzaman, M.: Quality-guided key frames selection from video stream based on object detection. JVCIR 65, 102678 (2019)

    Google Scholar 

  3. Cheng, M., Cai, K., Li, M.: Rwf-2000: an open large scale video database for violence detection. In: ICPR, pp. 4183–4190. IEEE (2021)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Elahi, G.M.E., Yang, Y.H.: Online learnable keyframe extraction in videos and its application with semantic word vector in action recognition. Pattern Recogn. 122, 108273 (2022)

    Article  Google Scholar 

  6. Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition. In: CVPR, pp. 203–213 (2020)

    Google Scholar 

  7. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)

    Google Scholar 

  8. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR, pp. 16000–16009 (2022)

    Google Scholar 

  9. Jia, M., Tang, L., Chen, B.C., Cardie, C., Belongie, S., Hariharan, B., Lim, S.N.: Visual prompt tuning. In: ECCV, pp. 709–727. Springer (2022)

    Google Scholar 

  10. Joao, C., Andrew, Z.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR pp. 6299–6308 (2017)

    Google Scholar 

  11. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)

  12. Li, K., et al.: Uniformer: unified transformer for efficient spatiotemporal representation learning. arXiv preprint arXiv:2201.04676 (2022)

  13. Liu, X., et al.: Gpt understands, too. AI Open (2023)

    Google Scholar 

  14. Luo, H., et al.: Clip4clip: an empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing 508, 293–304 (2022)

    Article  Google Scholar 

  15. Mahasseni, B., Lam, M., Todorovic, S.: Unsupervised video summarization with adversarial LSTM networks. In: CVPR, pp. 202–211 (2017)

    Google Scholar 

  16. Moon, W., Hyun, S., Park, S., Park, D., Heo, J.P.: Query-dependent video representation for moment retrieval and highlight detection. In: CVPR, June 2023

    Google Scholar 

  17. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. Advances in NeurIPS 27 (2014)

    Google Scholar 

  19. Sudhakaran, S., Lanz, O.: Learning to detect violent videos using convolutional long short-term memory. In: AVSS, pp. 1–6. IEEE (2017)

    Google Scholar 

  20. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. NeurIPS 30 (2017)

    Google Scholar 

  22. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  23. Wang, M., Xing, J., Liu, Y.: Actionclip: a new paradigm for video action recognition. arXiv preprint arXiv:2109.08472 (2021)

  24. Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Q. et al. (2025). A Decoupling Video Frame Selection Method for Action Recognition. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15283. Springer, Singapore. https://doi.org/10.1007/978-981-96-0122-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0122-6_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0121-9

  • Online ISBN: 978-981-96-0122-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics