Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design of a Novel Multi-Mode Deployable Metamorphic Aerospace Mechanism

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Abstract

This paper develops a novel multi-mode deployable metamorphic aerospace mechanism for aerospace equipment, which is composed of a double-mode base mechanism, six metamorphic kinematic chains, and the self-locking and unlocking mechanisms. The scissor-shaped mechanism is used to afford a good deploy/fold ratio for convenient storage and transportation, the multi-loop truss-shaped structure is adopted to obtain a good stiffness property, modular and lightweight designs are applied to enhance the expandability for different aerospace tasks. Besides, a mobility bifurcation method is used to realize the transformation between the deployment motion and the bending motion. Based on the special structural design and connection method, the aerospace mechanism can be assembled and multiple motion modes can be realized, which can be used for five types of space attack-defense equipment including the space robotic grasper, the reconfigurable robot, the crawling robot, the supporting mechanism for solar array, and the supporting mechanism for large deployable antenna. The specific design and assembly methods of the aerospace mechanisms are introduced in detail, and motion analysis is then conducted. Finally, five types of key potential applications are simulated to verify their effectiveness and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding, X.L., Yang, Y., Dai, J.S.: Design and kinematic analysis of a novel prism deployable mechanism. Mech. Mach. Theory 63, 35–49 (2013)

    Article  MATH  Google Scholar 

  2. Puig, L., Barton, A., Rando, N.: A review on large deployable structures for astrophysics missions. Acta Astronaut. 67, 12–26 (2010)

    Article  MATH  Google Scholar 

  3. Xu, K., Li, L., Bai, S.P., et al.: Design and analysis of a metamorphic mechanism cell for multistage orderly deployable/retractable mechanism. Mech. Mach. Theory 111, 85–98 (2017)

    Article  MATH  Google Scholar 

  4. Ramadoss, V., Zlatanov, D., Ding, X.L., et al.: Design, construction, and control of curves and surfaces via deployable mechanisms. J. Mech. Des-T. ASME 11(6), 061008 (2019)

    Google Scholar 

  5. Yang, Y., Peng, Y., Pu, H.Y., et al.: Deployable parallel lower-mobility manipulators with scissor-like elements. Mech. Mach. Theory 135, 226–250 (2019)

    Article  MATH  Google Scholar 

  6. Zirbel, S.A., Lang, R.J., Thomson, M.W., et al.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des-T. ASME 135(11), 111005 (2013)

    Google Scholar 

  7. Natori, M.C., Sakamoto, H., Katsumata, N.: Conceptual model study using origami for membrane space structures-a perspective of origami-based engineering. Mech. Eng. Rev. 2(1), 14–00368 (2014)

    MATH  Google Scholar 

  8. St-Onge, D., Sharf, I., Sagnieres, L., et al.: A deployable mechanism concept for the collection of small-to-medium-size space debris. Adv. Space Res. 61, 1286–1297 (2017)

    Article  Google Scholar 

  9. Sun, Z.H., Zhang, Y.Q., Yang, D.W.: Structural design, analysis, and experimental verification of an H-style deployable mechanism for large space-borne mesh antennas. Acta Astronaut. 178, 481–498 (2020)

    Article  MATH  Google Scholar 

  10. Han, B., Xu, Y.D., Yao, J.T., et al.: Design and analysis of a scissors double-ring truss deployable mechanism for space antennas. Aerosp. Sci. Technol. 93, 105357 (2019)

    Article  Google Scholar 

  11. Gao, C.Q., Kang, X., Lei, H., et al.: Design and analysis of a novel large-span two-fold deployable mechanism. Mech. Mach. Theory 186, 105352 (2023)

    Article  MATH  Google Scholar 

  12. Gao, C.Q., Huang, H.L., Li, Y., et al.: Design and analysis of a three-fingered deployable metamorphic robotic grasper. J. Mech. Des-T. ASME 144(8), 083302 (2022)

    Google Scholar 

  13. Gao, C.Q., Huang, H.L., Li, B., et al.: Design of a truss-shaped deployable grasping mechanism using mobility bifurcation. Mech. Mach. Theory 139, 346–358 (2019)

    Article  MATH  Google Scholar 

  14. Gao, C.Q., Zhang, Y., Kang, X., et al.: Dynamic analysis of a three-fingered deployable metamorphic robotic grasper. Mech. Mach. Theory 180, 105140 (2022)

    Article  MATH  Google Scholar 

  15. Gao, C.Q., Wang, J.H., Yang, X.J., et al.: Design and analysis of a novel truss-shaped variable-stiffness deployable robotic grasper. IEEE Access 8, 112944–112956 (2020)

    Article  MATH  Google Scholar 

  16. Gao, C.Q., Zhang, Y., Xu, P., et al.: Envelope grasping planning of a three-fingered deployable metamorphic robotic grasper. In: Proceedings of the IEEE International Conference on Cyborg and Bionic Systems, Wuhan, Hubei, China, 24–26 March 2023

    Google Scholar 

  17. Qiao, S.L., Guo, H.W., Liu, R.Q.: Self-adaptive grasp process and equilibrium configuration analysis of a 3-DOF UACT robotic finger. Mech. Mach. Theory 133, 250–266 (2018)

    Article  MATH  Google Scholar 

  18. Dai, J.S., Jones, J.R.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des-T. ASME. 121(3), 375–382 (1999)

    Article  MATH  Google Scholar 

  19. Liu, Y., Yao, Y.A., Kong, X.W., et al.: Type synthesis of reconfigurable single-loop mechanisms based on planar rhombus mechanisms. Mech. Mach. Theory 181(3), 105170 (2023)

    Google Scholar 

  20. She, Y., Xu, W.F., Su, H.J., et al.: Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure. Acta Astronaut. 120, 270–286 (2015)

    Article  MATH  Google Scholar 

  21. Xu, W.F., She, Y., Xu, Y.S.: Analytical and semi-analytical inverse kinematics of SSRMS - type manipulators with single-joint locked failure. Acta Astronaut. 105, 201–217 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

Research supported by the STU Scientific Research Initiation Grant (SRIG) (Grant No. NTF23019), the Research Projects of Department of Education of Guangdong Province (Grant No. 2023KTSCX317), the Shenzhen Polytechnic University Research Fund (Grant No. 6023310005K), and the Provincial Natural Science Foundation of Hunan (Grant No. 2023JJ50099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, C., Wang, H., Zhao, Y., Du, X., Liu, F. (2025). Design of a Novel Multi-Mode Deployable Metamorphic Aerospace Mechanism. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15201. Springer, Singapore. https://doi.org/10.1007/978-981-96-0771-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0771-6_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0770-9

  • Online ISBN: 978-981-96-0771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics