Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Privacy in Big Data Publishing: \(\eta \)-Inference Model

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2024)

Abstract

The advent of big data has significantly advanced the development of various applications and services by leveraging the extensive informational benefits of data publishing. However, the sensitive information contained within these data requires robust privacy protection prior to sharing and publishing. Effective privacy protection demands a clear definition of privacy standards and guarantees. While differential privacy (DP) and its variants are widely considered the gold standard for privacy preservation, their practical implementation often faces challenges that can lead to undesirable outcomes. This paper highlights the limitations of DP, such as the misuse of sequential composition, the presence of dishonest entities, and a privacy threat known as stigmatization, which falls outside the scope of DP’s guarantees. To address these challenges, we propose the \(\eta \)-inference model, which ensures information limited privacy and effectively mitigates the problems encountered with DP. Additionally, the \(\eta \)-inference model exhibits data incrementally invariant properties, making it particularly suitable for dynamic and distributed data publishing scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bindschaedler, V., Shokri, R., Gunter, C.A.: Plausible deniability for privacy-preserving data synthesis. Proc. VLDB Endow. 10(5), 481–492 (jan 2017). https://doi.org/10.14778/3055540.3055542

  2. Bun, M., Desfontaines, D., Dwork, C., Naor, M., Nissim, K., Roth, A., Smith, A., Steinke, T., Ullman, J., Vadhan, S.: Statistical inference is not a privacy violation. Differential-Privacy.org (06 2021), https://differentialprivacy.org/inference-is-not-a-privacy-violation/

  3. Cai, K., Lei, X., Wei, J., Xiao, X.: Data synthesis via differentially private markov random fields. Proc. VLDB Endow. 14(11), 2190–2202 (jul 2021). https://doi.org/10.14778/3476249.3476272

  4. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the scope of differential privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) Privacy Enhancing Technologies, pp. 82–102. Springer, Berlin Heidelberg, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. pp. 429–438 (2013). https://doi.org/10.1109/FOCS.2013.53

  6. Dwork, C.: Differential privacy. In: International Colloquium on Automata, Languages, and Programming. pp. 1–12 (2006)

    Google Scholar 

  7. Ekenstedt, E., Ong, L., Liu, Y., Johnson, S., Yeoh, P.L., Kliewer, J.: When differential privacy implies syntactic privacy. IEEE Trans. Inf. Forensics Secur. 17, 2110–2124 (2022). https://doi.org/10.1109/TIFS.2022.3177953

    Article  Google Scholar 

  8. He, X., Machanavajjhala, A., Ding, B.: Blowfish privacy: Tuning privacy-utility trade-offs using policies. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. pp. 1447–1458. SIGMOD ’14, Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2588555.2588581

  9. Idrizi, E., Hamiti, M.: Classification of text, image and audio messages used for cyberbulling on social medias. In: 2023 46th MIPRO ICT and Electronics Convention (MIPRO). pp. 797–802 (2023). https://doi.org/10.23919/MIPRO57284.2023.10159835

  10. Jiang, B., Li, M., Tandon, R.: Local information privacy and its application to privacy-preserving data aggregation. IEEE Trans. Dependable Secure Comput. 19(3), 1918–1935 (2022). https://doi.org/10.1109/TDSC.2020.3041733

    Article  Google Scholar 

  11. Jin, F., Hua, W., Francia, M., Chao, P., Orlowska, M., Zhou, X.: A survey and experimental study on privacy-preserving trajectory data publishing. IEEE Transactions on Knowledge and Data Engineering pp. 1–1 (2022). https://doi.org/10.1109/TKDE.2022.3174204

  12. Kenny, C.T., Kuriwaki, S., McCartan, C., Rosenman, E.T.R., Simko, T., Imai, K.: The use of differential privacy for census data and its impact on redistricting: The case of the 2020 u.s. census. Science Advances 7(41), eabk3283 (2021). https://doi.org/10.1126/sciadv.abk3283

  13. Kifer, D., Machanavajjhala, A.: A rigorous and customizable framework for privacy. In: Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. pp. 77–88. PODS ’12, Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2213556.2213571

  14. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering. pp. 106–115 (2007). https://doi.org/10.1109/ICDE.2007.367856

  15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3–es (mar 2007). https://doi.org/10.1145/1217299.1217302

  16. Majeed, A., Lee, S.: Anonymization techniques for privacy preserving data publishing: A comprehensive survey. IEEE Access 9, 8512–8545 (2021). https://doi.org/10.1109/ACCESS.2020.3045700

    Article  Google Scholar 

  17. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07). pp. 94–103 (2007). https://doi.org/10.1109/FOCS.2007.66

  18. Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF). pp. 263–275 (2017). https://doi.org/10.1109/CSF.2017.11

  19. Murakami, T., Kawamoto, Y.: Utility-Optimized local differential privacy mechanisms for distribution estimation. In: 28th USENIX Security Symposium (USENIX Security 19). pp. 1877–1894. USENIX Association, Santa Clara, CA (Aug 2019), https://www.usenix.org/conference/usenixsecurity19/presentation/murakami

  20. Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. pp. 665–676. SIGMOD ’07, Association for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1247480.1247554

  21. du Pin Calmon, F., Fawaz, N.: Privacy against statistical inference. In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). pp. 1401–1408 (2012). https://doi.org/10.1109/Allerton.2012.6483382

  22. Rastogi, V., Suciu, D., Hong, S.: The boundary between privacy and utility in data publishing. In: Proceedings of the 33rd International Conference on Very Large Data Bases. pp. 531–542. VLDB ’07, VLDB Endowment (2007)

    Google Scholar 

  23. Sweeney, L.: K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (oct 2002). https://doi.org/10.1142/S0218488502001648

  24. Takagi, S., Takahashi, T., Cao, Y., Yoshikawa, M.: P3gm: Private high-dimensional data release via privacy preserving phased generative model. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE). pp. 169–180 (2021). https://doi.org/10.1109/ICDE51399.2021.00022

  25. Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K.: (\(\alpha \), k)-anonymity: An enhanced k-anonymity model for privacy preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 754–759. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1150402.1150499

  26. Xu, C., Ren, J., Zhang, Y., Qin, Z., Ren, K.: Dppro: Differentially private high-dimensional data release via random projection. IEEE Trans. Inf. Forensics Secur. 12(12), 3081–3093 (2017). https://doi.org/10.1109/TIFS.2017.2737966

    Article  Google Scholar 

  27. Yang, B., Sato, I., Nakagawa, H.: Bayesian differential privacy on correlated data. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. p. 747–762. SIGMOD ’15, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2723372.2747643

  28. Yang, X., Wang, T., Ren, X., Yu, W.: Survey on improving data utility in differentially private sequential data publishing. IEEE Transactions on Big Data 7(4), 729–749 (2021). https://doi.org/10.1109/TBDATA.2017.2715334

    Article  Google Scholar 

  29. Yao, L., Wang, X., Hu, H., Wu, G.: A utility-aware anonymization model for multiple sensitive attributes based on association concealment. IEEE Transactions on Dependable and Secure Computing pp. 1–12 (2023). https://doi.org/10.1109/TDSC.2023.3299641

  30. Zhang, M., Li, X., Ren, Y., Luo, B., Miao, Y., Liu, X., Deng, R.H.: Privacy-preserved data trading via verifiable data disturbance. IEEE Transactions on Dependable and Secure Computing pp. 1–14 (2023). https://doi.org/10.1109/TDSC.2023.3323669

  31. Zhang, Z., Wang, T., Li, N., Honorio, J., Backes, M., He, S., Chen, J., Zhang, Y.: PrivSyn: Differentially private data synthesis. In: 30th USENIX Security Symposium (USENIX Security 21). pp. 929–946. USENIX Association (Aug 2021), https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zhikun

  32. Zhu, T., Li, G., Zhou, W., Yu, P.S.: Differentially private data publishing and analysis: A survey. IEEE Trans. Knowl. Data Eng. 29(8), 1619–1638 (2017). https://doi.org/10.1109/TKDE.2017.2697856

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored in part by the National Natural Science Foundation of China (contract/grant numbers: 62272084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shisong Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., yao, L., Wu, G., Geng, S. (2025). Enhancing Privacy in Big Data Publishing: \(\eta \)-Inference Model. In: Sheng, Q.Z., et al. Advanced Data Mining and Applications. ADMA 2024. Lecture Notes in Computer Science(), vol 15392. Springer, Singapore. https://doi.org/10.1007/978-981-96-0850-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0850-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0849-2

  • Online ISBN: 978-981-96-0850-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics