Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TCL-Net: A Lightweight and Efficient Dehazing Network with Frequency-Domain Fusion and Multi-Angle Attention

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15475))

Included in the following conference series:

  • 86 Accesses

Abstract

Hazy images present a challenging ill-posed problem, suffering from information loss and color distortion. Current deep learning-based dehazing methods enhance performance by increasing network depth but incur substantial parameter overhead. Meanwhile, standard convolutional layers concentrate on low-frequency details, often overlooking high-frequency information, which hinders the effective utilization of prior information presented in blurred images. In this paper, we propose TCL-Net, a lightweight dehazing network which emphasizes on frequency-domain features. Our network first includes a sophisticated layer for extracting high-frequency and low-frequency information, specifically designed using Fast Vision Transformers for the original blurred images. Concurrently, we have designed a frequency-domain information fusion module that integrates high-frequency and low-frequency information with the characteristics of convolutional networks for subsequent convolutional layers. Furthermore, to better leverage spatial information of the original image, we introduce a multi-angle attention module. With the aforementioned design, our network achieves superior performance with a total parameter size of only 0.48 MB, representing an order of magnitude reduction in parameters compared to other state-of-the-art lightweight networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense-haze: A benchmark for image dehazing with dense-haze and haze-free images. In: 2019 IEEE international conference on image processing (ICIP). pp. 1014–1018. IEEE (2019)

    Google Scholar 

  2. Ancuti, C.O., Ancuti, C., Timofte, R.: Nh-haze: An image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 444–445 (2020)

    Google Scholar 

  3. Bai, H., Pan, J., Xiang, X., Tang, J.: Self-guided image dehazing using progressive feature fusion. IEEE Trans. Image Process. 31, 1217–1229 (2022)

    Article  Google Scholar 

  4. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1674–1682 (2016)

    Google Scholar 

  5. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chen, C., Do, M.N., Wang, J.: Robust Image and Video Dehazing with Visual Artifact Suppression via Gradient Residual Minimization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 576–591. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_36

    Chapter  Google Scholar 

  7. Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 357–366 (2021)

    Google Scholar 

  8. Chen, Z., He, Z., Lu, Z.M.: Dea-net: Single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Transactions on Image Processing (2024)

    Google Scholar 

  9. Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., et al.: Rethinking attention with performers. arXiv preprint arXiv:2009.14794 (2020)

  10. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.: Twins: Revisiting the design of spatial attention in vision transformers. Adv. Neural. Inf. Process. Syst. 34, 9355–9366 (2021)

    Google Scholar 

  11. Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.H.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 2157–2167 (2020)

    Google Scholar 

  12. Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D., Guo, B.: Cswin transformer: A general vision transformer backbone with cross-shaped windows. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 12124–12134 (2022)

    Google Scholar 

  13. Fan, G., Hua, Z., Li, J.: Multi-scale depth information fusion network for image dehazing. Appl. Intell. 51(10), 7262–7280 (2021). https://doi.org/10.1007/s10489-021-02236-2

    Article  Google Scholar 

  14. Fattal, R.: Dehazing using color-lines. ACM transactions on graphics (TOG) 34(1), 1–14 (2014)

    Article  Google Scholar 

  15. Galdran, A., Vazquez-Corral, J., Pardo, D., Bertalmio, M.: Fusion-based variational image dehazing. IEEE Signal Process. Lett. 24(2), 151–155 (2016)

    Google Scholar 

  16. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: International conference on machine learning. pp. 1243–1252. PMLR (2017)

    Google Scholar 

  17. Guo, C.L., Yan, Q., Anwar, S., Cong, R., Ren, W., Li, C.: Image dehazing transformer with transmission-aware 3d position embedding. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 5812–5820 (2022)

    Google Scholar 

  18. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  19. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: Dslr-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE international conference on computer vision. pp. 3277–3285 (2017)

    Google Scholar 

  20. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410 (2016)

  21. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network. In: Proceedings of the IEEE international conference on computer vision. pp. 4770–4778 (2017)

    Google Scholar 

  22. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: Attention-based multi-scale network for image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 7314–7323 (2019)

    Google Scholar 

  24. Liu, Y., Pan, J., Ren, J., Su, Z.: Learning deep priors for image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 2492–2500 (2019)

    Google Scholar 

  25. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 10012–10022 (2021)

    Google Scholar 

  26. Lou, W., Gong, L., Wang, C., Du, Z., Zhou, X.: Octcnn: A high throughput fpga accelerator for cnns using octave convolution algorithm. IEEE Trans. Comput. 71(8), 1847–1859 (2021)

    Google Scholar 

  27. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)

    Article  Google Scholar 

  28. Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of the seventh IEEE international conference on computer vision. vol. 2, pp. 820–827. IEEE (1999)

    Google Scholar 

  29. Pan, Z., Cai, J., Zhuang, B.: Fast vision transformers with hilo attention. Adv. Neural. Inf. Process. Syst. 35, 14541–14554 (2022)

    Google Scholar 

  30. Park, N., Kim, S.: How do vision transformers work? arXiv preprint arXiv:2202.06709 (2022)

  31. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: Feature fusion attention network for single image dehazing. In: Proceedings of the AAAI conference on artificial intelligence. vol. 34, pp. 11908–11915 (2020)

    Google Scholar 

  32. Qin, Y., Lou, W., Wang, C., Gong, L., Zhou, X.: Enhancing long sequence input processing in fpga-based transformer accelerators through attention fusion. In: Proceedings of the Great Lakes Symposium on VLSI 2024. pp. 599–603 (2024)

    Google Scholar 

  33. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single Image Dehazing via Multi-scale Convolutional Neural Networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  34. Song, Y., He, Z., Qian, H., Du, X.: Vision transformers for single image dehazing. IEEE Trans. Image Process. 32, 1927–1941 (2023)

    Article  Google Scholar 

  35. Ullah, H., Muhammad, K., Irfan, M., Anwar, S., Sajjad, M., Imran, A.S., de Albuquerque, V.H.C.: Light-dehazenet: a novel lightweight cnn architecture for single image dehazing. IEEE Trans. Image Process. 30, 8968–8982 (2021)

    Article  Google Scholar 

  36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  37. Wang, C., Gong, L., Li, X., Zhou, X.: A ubiquitous machine learning accelerator with automatic parallelization on fpga. IEEE Trans. Parallel Distrib. Syst. 31(10), 2346–2359 (2020)

    Article  Google Scholar 

  38. Wu, H., Qu, Y., Lin, S., Zhou, J., Qiao, R., Zhang, Z., Xie, Y., Ma, L.: Contrastive learning for compact single image dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10551–10560 (2021)

    Google Scholar 

  39. Wu, R.Q., Duan, Z.P., Guo, C.L., Chai, Z., Li, C.: Ridcp: Revitalizing real image dehazing via high-quality codebook priors. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 22282–22291 (2023)

    Google Scholar 

  40. Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B., Yuan, L., Gao, J.: Focal attention for long-range interactions in vision transformers. Adv. Neural. Inf. Process. Syst. 34, 30008–30022 (2021)

    Google Scholar 

  41. Yang, X., Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentanglement and adversarial training. In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018)

    Google Scholar 

  42. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3194–3203 (2018)

    Google Scholar 

  43. Zhang, J., Cao, Y., Fang, S., Kang, Y., Wen Chen, C.: Fast haze removal for nighttime image using maximum reflectance prior. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7418–7426 (2017)

    Google Scholar 

  44. Zhao, S., Zhang, L., Shen, Y., Zhou, Y.: Refinednet: A weakly supervised refinement framework for single image dehazing. IEEE Trans. Image Process. 30, 3391–3404 (2021)

    Article  Google Scholar 

  45. Zhu, Q., Mai, J., Shao, L.: Single image dehazing using color attenuation prior. In: BMVC. vol. 4, pp. 1674–1682. Citeseer (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key R&D Program of China under Grants 2022YFB4501600 and 2022YFB4501603, in part by the National Natural Science Foundation of China under Grants 62102383, 61976200, and 62172380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqi Lou .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, C., Lou, W. (2025). TCL-Net: A Lightweight and Efficient Dehazing Network with Frequency-Domain Fusion and Multi-Angle Attention. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15475. Springer, Singapore. https://doi.org/10.1007/978-981-96-0911-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0911-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0910-9

  • Online ISBN: 978-981-96-0911-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics