Abstract
Hazy images present a challenging ill-posed problem, suffering from information loss and color distortion. Current deep learning-based dehazing methods enhance performance by increasing network depth but incur substantial parameter overhead. Meanwhile, standard convolutional layers concentrate on low-frequency details, often overlooking high-frequency information, which hinders the effective utilization of prior information presented in blurred images. In this paper, we propose TCL-Net, a lightweight dehazing network which emphasizes on frequency-domain features. Our network first includes a sophisticated layer for extracting high-frequency and low-frequency information, specifically designed using Fast Vision Transformers for the original blurred images. Concurrently, we have designed a frequency-domain information fusion module that integrates high-frequency and low-frequency information with the characteristics of convolutional networks for subsequent convolutional layers. Furthermore, to better leverage spatial information of the original image, we introduce a multi-angle attention module. With the aforementioned design, our network achieves superior performance with a total parameter size of only 0.48 MB, representing an order of magnitude reduction in parameters compared to other state-of-the-art lightweight networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense-haze: A benchmark for image dehazing with dense-haze and haze-free images. In: 2019 IEEE international conference on image processing (ICIP). pp. 1014–1018. IEEE (2019)
Ancuti, C.O., Ancuti, C., Timofte, R.: Nh-haze: An image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 444–445 (2020)
Bai, H., Pan, J., Xiang, X., Tang, J.: Self-guided image dehazing using progressive feature fusion. IEEE Trans. Image Process. 31, 1217–1229 (2022)
Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1674–1682 (2016)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)
Chen, C., Do, M.N., Wang, J.: Robust Image and Video Dehazing with Visual Artifact Suppression via Gradient Residual Minimization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 576–591. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_36
Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 357–366 (2021)
Chen, Z., He, Z., Lu, Z.M.: Dea-net: Single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Transactions on Image Processing (2024)
Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., et al.: Rethinking attention with performers. arXiv preprint arXiv:2009.14794 (2020)
Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.: Twins: Revisiting the design of spatial attention in vision transformers. Adv. Neural. Inf. Process. Syst. 34, 9355–9366 (2021)
Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.H.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 2157–2167 (2020)
Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D., Guo, B.: Cswin transformer: A general vision transformer backbone with cross-shaped windows. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 12124–12134 (2022)
Fan, G., Hua, Z., Li, J.: Multi-scale depth information fusion network for image dehazing. Appl. Intell. 51(10), 7262–7280 (2021). https://doi.org/10.1007/s10489-021-02236-2
Fattal, R.: Dehazing using color-lines. ACM transactions on graphics (TOG) 34(1), 1–14 (2014)
Galdran, A., Vazquez-Corral, J., Pardo, D., Bertalmio, M.: Fusion-based variational image dehazing. IEEE Signal Process. Lett. 24(2), 151–155 (2016)
Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: International conference on machine learning. pp. 1243–1252. PMLR (2017)
Guo, C.L., Yan, Q., Anwar, S., Cong, R., Ren, W., Li, C.: Image dehazing transformer with transmission-aware 3d position embedding. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 5812–5820 (2022)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: Dslr-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE international conference on computer vision. pp. 3277–3285 (2017)
Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410 (2016)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network. In: Proceedings of the IEEE international conference on computer vision. pp. 4770–4778 (2017)
Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)
Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: Attention-based multi-scale network for image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 7314–7323 (2019)
Liu, Y., Pan, J., Ren, J., Su, Z.: Learning deep priors for image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 2492–2500 (2019)
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 10012–10022 (2021)
Lou, W., Gong, L., Wang, C., Du, Z., Zhou, X.: Octcnn: A high throughput fpga accelerator for cnns using octave convolution algorithm. IEEE Trans. Comput. 71(8), 1847–1859 (2021)
Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)
Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of the seventh IEEE international conference on computer vision. vol. 2, pp. 820–827. IEEE (1999)
Pan, Z., Cai, J., Zhuang, B.: Fast vision transformers with hilo attention. Adv. Neural. Inf. Process. Syst. 35, 14541–14554 (2022)
Park, N., Kim, S.: How do vision transformers work? arXiv preprint arXiv:2202.06709 (2022)
Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: Feature fusion attention network for single image dehazing. In: Proceedings of the AAAI conference on artificial intelligence. vol. 34, pp. 11908–11915 (2020)
Qin, Y., Lou, W., Wang, C., Gong, L., Zhou, X.: Enhancing long sequence input processing in fpga-based transformer accelerators through attention fusion. In: Proceedings of the Great Lakes Symposium on VLSI 2024. pp. 599–603 (2024)
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single Image Dehazing via Multi-scale Convolutional Neural Networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10
Song, Y., He, Z., Qian, H., Du, X.: Vision transformers for single image dehazing. IEEE Trans. Image Process. 32, 1927–1941 (2023)
Ullah, H., Muhammad, K., Irfan, M., Anwar, S., Sajjad, M., Imran, A.S., de Albuquerque, V.H.C.: Light-dehazenet: a novel lightweight cnn architecture for single image dehazing. IEEE Trans. Image Process. 30, 8968–8982 (2021)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)
Wang, C., Gong, L., Li, X., Zhou, X.: A ubiquitous machine learning accelerator with automatic parallelization on fpga. IEEE Trans. Parallel Distrib. Syst. 31(10), 2346–2359 (2020)
Wu, H., Qu, Y., Lin, S., Zhou, J., Qiao, R., Zhang, Z., Xie, Y., Ma, L.: Contrastive learning for compact single image dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10551–10560 (2021)
Wu, R.Q., Duan, Z.P., Guo, C.L., Chai, Z., Li, C.: Ridcp: Revitalizing real image dehazing via high-quality codebook priors. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 22282–22291 (2023)
Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B., Yuan, L., Gao, J.: Focal attention for long-range interactions in vision transformers. Adv. Neural. Inf. Process. Syst. 34, 30008–30022 (2021)
Yang, X., Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentanglement and adversarial training. In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018)
Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3194–3203 (2018)
Zhang, J., Cao, Y., Fang, S., Kang, Y., Wen Chen, C.: Fast haze removal for nighttime image using maximum reflectance prior. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7418–7426 (2017)
Zhao, S., Zhang, L., Shen, Y., Zhou, Y.: Refinednet: A weakly supervised refinement framework for single image dehazing. IEEE Trans. Image Process. 30, 3391–3404 (2021)
Zhu, Q., Mai, J., Shao, L.: Single image dehazing using color attenuation prior. In: BMVC. vol. 4, pp. 1674–1682. Citeseer (2014)
Acknowledgments
This work was supported in part by the National Key R&D Program of China under Grants 2022YFB4501600 and 2022YFB4501603, in part by the National Natural Science Foundation of China under Grants 62102383, 61976200, and 62172380.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tang, C., Lou, W. (2025). TCL-Net: A Lightweight and Efficient Dehazing Network with Frequency-Domain Fusion and Multi-Angle Attention. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15475. Springer, Singapore. https://doi.org/10.1007/978-981-96-0911-6_12
Download citation
DOI: https://doi.org/10.1007/978-981-96-0911-6_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0910-9
Online ISBN: 978-981-96-0911-6
eBook Packages: Computer ScienceComputer Science (R0)