Abstract
Endovascular surgical tool reconstruction represents an important factor in advancing endovascular tool navigation, which is an important step in endovascular surgery. However, the lack of publicly available datasets significantly restricts the development and validation of novel machine learning approaches. Moreover, due to the need for specialized equipment such as biplanar scanners, most of the previous research employs monoplanar fluoroscopic technologies, hence only capturing the data from a single view and significantly limiting the reconstruction accuracy. To bridge this gap, we introduce Guide3D, a bi-planar X-ray dataset for 3D reconstruction. The dataset represents a collection of high resolution bi-planar, manually annotated fluoroscopic videos, captured in real-world settings. Validating our dataset within a simulated environment reflective of clinical settings confirms its applicability for real-world applications. Furthermore, we propose a new benchmark for guidewrite shape prediction, serving as a strong baseline for future work. Guide3D not only addresses an essential need by offering a platform for advancing segmentation and 3D reconstruction techniques but also aids the development of more accurate and efficient endovascular surgery interventions. Our code and dataset will be made publicly available to encourage further studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altingövde, O., Mishchuk, A., Ganeeva, G., Oveisi, E., Hebert, C., Fua, P.: 3d reconstruction of curvilinear structures with stereo matching deep convolutional neural networks. Ultramicroscopy 234, 113460 (2022)
Ambrosini, P., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T.: Fully automatic and real-time catheter segmentation in x-ray fluoroscopy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2017)
Ambrosini, P., Smal, I., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T.: 3d catheter tip tracking in 2d x-ray image sequences using a hidden markov model and 3d rotational angiography. In: AE-CAI (2015)
Barbu, A., Athitsos, V., Georgescu, B., Boehm, S., Durlak, P., Comaniciu, D.: Hierarchical learning of curves application to guidewire localization in fluoroscopy. In: CVPR (2007)
Baur, C., Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Automatic 3d reconstruction of electrophysiology catheters from two-view monoplane c-arm image sequences. Int J Comput Assist Radiol Surg (2016)
Brainerd, E.L., Baier, D.B., Gatesy, S.M., Hedrick, T.L., Metzger, K.A., Gilbert, S.L., Crisco, J.J.: X-ray reconstruction of moving morphology (xromm): precision, accuracy and applications in comparative biomechanics research. J Exp Zool A Ecol Genet Physiol (2010)
Brost, A., Wimmer, A., Liao, R., Hornegger, J., Strobel, N.: Catheter tracking: Filter-based vs. learning-based. In: DAGM (2010)
Burgner, J., Herrell, S.D., Webster III, R.J.: Toward fluoroscopic shape reconstruction for control of steerable medical devices. In: Dynamic Systems and Control Conference. vol. 54761, pp. 791–794 (2011)
Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: ECCV (2022)
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv (2021)
CVAT.ai Corporation: Computer vision annotation tool (cvat) (Nov 2023). https://doi.org/10.5281/zenodo.4009388, https://cvat.ai/
Danilov, V.V., Kolpashchikov, D.Y., Gerget, O.M., Laptev, N.V., Proutski, A., Gómez, L.A.H., Alvarez, F., Ledesma-Carbayo, M.J.: Use of semi-synthetic data for catheter segmentation improvement. Comput Med Imaging Graph (2023)
Delmas, C., Berger, M.O., Kerrien, E., Riddell, C., Trousset, Y., Anxionnat, R., Bracard, S.: Three-dimensional curvilinear device reconstruction from two fluoroscopic views. In: Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 9415, pp. 100–110. Spie (2015)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Dozat, T.: Incorporating nesterov momentum into adam. ICLR (Workshop) (2016)
Gailloud, P., Muster, M., Piotin, M., Mottu, F., Murphy, K.J., Fasel, J.H., Rüfenacht, D.A.: In vitro models of intracranial arteriovenous fistulas for the evaluation of new endovascular treatment materials. AJNR (1999)
Hoffmann, M., Brost, A., Jakob, C., Bourier, F., Koch, M., Kurzidim, K., Hornegger, J., Strobel, N.: Semi-automatic Catheter Reconstruction from Two Views. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 584–591. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_72
Hoffmann, M., Brost, A., Jakob, C., Koch, M., Bourier, F., Kurzidim, K., Hornegger, J., Strobel, N.: Reconstruction method for curvilinear structures from two views. In: Medical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 8671, pp. 630–637. Spie (2013)
Hoffmann, M., Brost, A., Koch, M., Bourier, F., Maier, A., Kurzidim, K., Strobel, N., Hornegger, J.: Electrophysiology catheter detection and reconstruction from two views in fluoroscopic images. IEEE Trans. Med. Imaging 35(2), 567–579 (2015)
Jianu, T., Huang, B., Vu, M.N., Abdelaziz, M.E., Fichera, S., Lee, C.Y., Berthet-Rayne, P., y Baena, F.R., Nguyen, A.: Cathsim: An open-source simulator for endovascular intervention. IEEE T-MRB (2024)
Klema, V., Laub, A.: The singular value decomposition: Its computation and some applications. IEEE Trans. Autom. Control 25(2), 164–176 (1980)
Ma, Y., King, A.P., Gogin, N., Rinaldi, C.A., Gill, J., Razavi, R., Rhode, K.S.: Real-time respiratory motion correction for cardiac electrophysiology procedures using image-based coronary sinus catheter tracking. In: MICCAI (2010)
Martin, J.B., Sayegh, Y., Gailloud, P., Sugiu, K., Khan, H.G., Fasel, J.H., Rüfenacht, D.A.: In-vitro models of human carotid atheromatous disease. International Course Book of Peripheral Vascular Intervention (1998)
Mastmeyer, A., Pernelle, G., Barber, L., Pieper, S., Fortmeier, D., Wells, S., Handels, H., Kapur, T.: Model-based catheter segmentation in mri-images. arXiv (2017)
Nguyen, A., Kundrat, D., Dagnino, G., Chi, W., Abdelaziz, M.E., Guo, Y., Ma, Y., Kwok, T.M., Riga, C., Yang, G.Z.: End-to-end real-time catheter segmentation with optical flow-guided warping during endovascular intervention. In: ICRA. pp. 9967–9973. IEEE (2020)
Petković, T., Homan, R., Lončarić, S.: Real-time 3d position reconstruction of guidewire for monoplane x-ray. Comput Med Imaging Graph (2014)
Püschel, A., Schafmayer, C., Groß, J.: Robot-assisted techniques in vascular and endovascular surgery. Langenbecks Arch. Surg. , 1–7 (2022). https://doi.org/10.1007/s00423-022-02465-0
Rafii-Tari, H., Payne, C.J., Yang, G.Z.: Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng (2014)
Ramadani, A., Bui, M., Wendler, T., Schunkert, H., Ewert, P., Navab, N.: A survey of catheter tracking concepts and methodologies. Med Image Anal (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI (2015)
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: Learning persistent 3d feature embeddings. In: CVPR. pp. 2437–2446 (2019)
Subramanian, V., Wang, H., Wu, J.T., Wong, K.C., Sharma, A., Syeda-Mahmood, T.: Automated detection and type classification of central venous catheters in chest x-rays. In: MICCAI (2019)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014)
Verdonck, B., Bourel, P., Coste, E., Gerritsen, F.A., Rousseau, J.: Variations in the geometrical distortion of x-ray image intensifiers. In: Physics of Medical Imaging (1999)
Wagner, M., Schafer, S., Strother, C., Mistretta, C.: 4d interventional device reconstruction from biplane fluoroscopy. Med. Phys. 43(3), 1324–1334 (2016)
Wu, X., Housden, J., Ma, Y., Rhode, K., Rueckert, D.: A fast catheter segmentation and tracking from echocardiographic sequences based on corresponding x-ray fluoroscopic image segmentation and hierarchical graph modelling. In: ISBI (2014)
Yi, X., Adams, S., Babyn, P., Elnajmi, A.: Automatic catheter and tube detection in pediatric x-ray images using a scale-recurrent network and synthetic data. JDI (2020)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach, Intell (2000)
Zhou, Y.J., Xie, X.L., Zhou, X.H., Liu, S.Q., Bian, G.B., Hou, Z.G.: A real-time multifunctional framework for guidewire morphological and positional analysis in interventional x-ray fluoroscopy. Trans. Cogn. Develop, Syst (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jianu, T. et al. (2025). Guide3D: A Bi-planar X-ray Dataset for 3D Shape Reconstruction. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15476. Springer, Singapore. https://doi.org/10.1007/978-981-96-0917-8_21
Download citation
DOI: https://doi.org/10.1007/978-981-96-0917-8_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0916-1
Online ISBN: 978-981-96-0917-8
eBook Packages: Computer ScienceComputer Science (R0)