Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Guide3D: A Bi-planar X-ray Dataset for 3D Shape Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Abstract

Endovascular surgical tool reconstruction represents an important factor in advancing endovascular tool navigation, which is an important step in endovascular surgery. However, the lack of publicly available datasets significantly restricts the development and validation of novel machine learning approaches. Moreover, due to the need for specialized equipment such as biplanar scanners, most of the previous research employs monoplanar fluoroscopic technologies, hence only capturing the data from a single view and significantly limiting the reconstruction accuracy. To bridge this gap, we introduce Guide3D, a bi-planar X-ray dataset for 3D reconstruction. The dataset represents a collection of high resolution bi-planar, manually annotated fluoroscopic videos, captured in real-world settings. Validating our dataset within a simulated environment reflective of clinical settings confirms its applicability for real-world applications. Furthermore, we propose a new benchmark for guidewrite shape prediction, serving as a strong baseline for future work. Guide3D not only addresses an essential need by offering a platform for advancing segmentation and 3D reconstruction techniques but also aids the development of more accurate and efficient endovascular surgery interventions. Our code and dataset will be made publicly available to encourage further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altingövde, O., Mishchuk, A., Ganeeva, G., Oveisi, E., Hebert, C., Fua, P.: 3d reconstruction of curvilinear structures with stereo matching deep convolutional neural networks. Ultramicroscopy 234, 113460 (2022)

    Article  Google Scholar 

  2. Ambrosini, P., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T.: Fully automatic and real-time catheter segmentation in x-ray fluoroscopy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2017)

    Google Scholar 

  3. Ambrosini, P., Smal, I., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T.: 3d catheter tip tracking in 2d x-ray image sequences using a hidden markov model and 3d rotational angiography. In: AE-CAI (2015)

    Google Scholar 

  4. Barbu, A., Athitsos, V., Georgescu, B., Boehm, S., Durlak, P., Comaniciu, D.: Hierarchical learning of curves application to guidewire localization in fluoroscopy. In: CVPR (2007)

    Google Scholar 

  5. Baur, C., Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Automatic 3d reconstruction of electrophysiology catheters from two-view monoplane c-arm image sequences. Int J Comput Assist Radiol Surg (2016)

    Google Scholar 

  6. Brainerd, E.L., Baier, D.B., Gatesy, S.M., Hedrick, T.L., Metzger, K.A., Gilbert, S.L., Crisco, J.J.: X-ray reconstruction of moving morphology (xromm): precision, accuracy and applications in comparative biomechanics research. J Exp Zool A Ecol Genet Physiol (2010)

    Google Scholar 

  7. Brost, A., Wimmer, A., Liao, R., Hornegger, J., Strobel, N.: Catheter tracking: Filter-based vs. learning-based. In: DAGM (2010)

    Google Scholar 

  8. Burgner, J., Herrell, S.D., Webster III, R.J.: Toward fluoroscopic shape reconstruction for control of steerable medical devices. In: Dynamic Systems and Control Conference. vol. 54761, pp. 791–794 (2011)

    Google Scholar 

  9. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: ECCV (2022)

    Google Scholar 

  10. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv (2021)

    Google Scholar 

  11. CVAT.ai Corporation: Computer vision annotation tool (cvat) (Nov 2023). https://doi.org/10.5281/zenodo.4009388, https://cvat.ai/

  12. Danilov, V.V., Kolpashchikov, D.Y., Gerget, O.M., Laptev, N.V., Proutski, A., Gómez, L.A.H., Alvarez, F., Ledesma-Carbayo, M.J.: Use of semi-synthetic data for catheter segmentation improvement. Comput Med Imaging Graph (2023)

    Google Scholar 

  13. Delmas, C., Berger, M.O., Kerrien, E., Riddell, C., Trousset, Y., Anxionnat, R., Bracard, S.: Three-dimensional curvilinear device reconstruction from two fluoroscopic views. In: Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 9415, pp. 100–110. Spie (2015)

    Google Scholar 

  14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  15. Dozat, T.: Incorporating nesterov momentum into adam. ICLR (Workshop) (2016)

    Google Scholar 

  16. Gailloud, P., Muster, M., Piotin, M., Mottu, F., Murphy, K.J., Fasel, J.H., Rüfenacht, D.A.: In vitro models of intracranial arteriovenous fistulas for the evaluation of new endovascular treatment materials. AJNR (1999)

    Google Scholar 

  17. Hoffmann, M., Brost, A., Jakob, C., Bourier, F., Koch, M., Kurzidim, K., Hornegger, J., Strobel, N.: Semi-automatic Catheter Reconstruction from Two Views. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 584–591. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_72

    Chapter  Google Scholar 

  18. Hoffmann, M., Brost, A., Jakob, C., Koch, M., Bourier, F., Kurzidim, K., Hornegger, J., Strobel, N.: Reconstruction method for curvilinear structures from two views. In: Medical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 8671, pp. 630–637. Spie (2013)

    Google Scholar 

  19. Hoffmann, M., Brost, A., Koch, M., Bourier, F., Maier, A., Kurzidim, K., Strobel, N., Hornegger, J.: Electrophysiology catheter detection and reconstruction from two views in fluoroscopic images. IEEE Trans. Med. Imaging 35(2), 567–579 (2015)

    Article  Google Scholar 

  20. Jianu, T., Huang, B., Vu, M.N., Abdelaziz, M.E., Fichera, S., Lee, C.Y., Berthet-Rayne, P., y Baena, F.R., Nguyen, A.: Cathsim: An open-source simulator for endovascular intervention. IEEE T-MRB (2024)

    Google Scholar 

  21. Klema, V., Laub, A.: The singular value decomposition: Its computation and some applications. IEEE Trans. Autom. Control 25(2), 164–176 (1980)

    Article  MathSciNet  Google Scholar 

  22. Ma, Y., King, A.P., Gogin, N., Rinaldi, C.A., Gill, J., Razavi, R., Rhode, K.S.: Real-time respiratory motion correction for cardiac electrophysiology procedures using image-based coronary sinus catheter tracking. In: MICCAI (2010)

    Google Scholar 

  23. Martin, J.B., Sayegh, Y., Gailloud, P., Sugiu, K., Khan, H.G., Fasel, J.H., Rüfenacht, D.A.: In-vitro models of human carotid atheromatous disease. International Course Book of Peripheral Vascular Intervention (1998)

    Google Scholar 

  24. Mastmeyer, A., Pernelle, G., Barber, L., Pieper, S., Fortmeier, D., Wells, S., Handels, H., Kapur, T.: Model-based catheter segmentation in mri-images. arXiv (2017)

    Google Scholar 

  25. Nguyen, A., Kundrat, D., Dagnino, G., Chi, W., Abdelaziz, M.E., Guo, Y., Ma, Y., Kwok, T.M., Riga, C., Yang, G.Z.: End-to-end real-time catheter segmentation with optical flow-guided warping during endovascular intervention. In: ICRA. pp. 9967–9973. IEEE (2020)

    Google Scholar 

  26. Petković, T., Homan, R., Lončarić, S.: Real-time 3d position reconstruction of guidewire for monoplane x-ray. Comput Med Imaging Graph (2014)

    Google Scholar 

  27. Püschel, A., Schafmayer, C., Groß, J.: Robot-assisted techniques in vascular and endovascular surgery. Langenbecks Arch. Surg. , 1–7 (2022). https://doi.org/10.1007/s00423-022-02465-0

  28. Rafii-Tari, H., Payne, C.J., Yang, G.Z.: Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng (2014)

    Google Scholar 

  29. Ramadani, A., Bui, M., Wendler, T., Schunkert, H., Ewert, P., Navab, N.: A survey of catheter tracking concepts and methodologies. Med Image Anal (2022)

    Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  31. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: Learning persistent 3d feature embeddings. In: CVPR. pp. 2437–2446 (2019)

    Google Scholar 

  32. Subramanian, V., Wang, H., Wu, J.T., Wong, K.C., Sharma, A., Syeda-Mahmood, T.: Automated detection and type classification of central venous catheters in chest x-rays. In: MICCAI (2019)

    Google Scholar 

  33. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014)

    Google Scholar 

  34. Verdonck, B., Bourel, P., Coste, E., Gerritsen, F.A., Rousseau, J.: Variations in the geometrical distortion of x-ray image intensifiers. In: Physics of Medical Imaging (1999)

    Google Scholar 

  35. Wagner, M., Schafer, S., Strother, C., Mistretta, C.: 4d interventional device reconstruction from biplane fluoroscopy. Med. Phys. 43(3), 1324–1334 (2016)

    Article  Google Scholar 

  36. Wu, X., Housden, J., Ma, Y., Rhode, K., Rueckert, D.: A fast catheter segmentation and tracking from echocardiographic sequences based on corresponding x-ray fluoroscopic image segmentation and hierarchical graph modelling. In: ISBI (2014)

    Google Scholar 

  37. Yi, X., Adams, S., Babyn, P., Elnajmi, A.: Automatic catheter and tube detection in pediatric x-ray images using a scale-recurrent network and synthetic data. JDI (2020)

    Google Scholar 

  38. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach, Intell (2000)

    Book  Google Scholar 

  39. Zhou, Y.J., Xie, X.L., Zhou, X.H., Liu, S.Q., Bian, G.B., Hou, Z.G.: A real-time multifunctional framework for guidewire morphological and positional analysis in interventional x-ray fluoroscopy. Trans. Cogn. Develop, Syst (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Jianu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jianu, T. et al. (2025). Guide3D: A Bi-planar X-ray Dataset for 3D Shape Reconstruction. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15476. Springer, Singapore. https://doi.org/10.1007/978-981-96-0917-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0917-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0916-1

  • Online ISBN: 978-981-96-0917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics