Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Object Detection in Adverse Weather Conditions Through Entropy and Guided Multimodal Fusion

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Abstract

Integrating diverse representations from complementary sensing modalities is essential for robust scene interpretation in autonomous driving. Deep learning architectures that fuse vision and range data have advanced 2D and 3D object detection in recent years. However, these modalities often suffer degradation in adverse weather or lighting conditions, leading to decreased performance. While domain adaptation methods have been developed to bridge the gap between source and target domains, they typically fall short because of the inherent discrepancy between the source and target domains. This discrepancy can manifest in different distributions of data and different feature spaces. This paper introduces a comprehensive domain-adaptive object detection framework. Developed through deep transfer learning, the framework is designed to robustly generalize from labelled clear-weather data to unlabeled adverse weather conditions, enhancing the performance of deep learning-based object detection models. The innovative Patch Entropy Fusion Module (PEFM) is central to our approach, which dynamically integrates sensor data, emphasizing critical information and minimizing background distractions. This is further complemented by a novel Weighted Decision Module (WDM) that adjusts the contributions of different sensors based on their efficacy under specific environmental conditions, thereby optimizing detection accuracy. Additionally, we integrate a domain align loss during the transfer learning process to ensure effective domain adaptation by regularizing the feature map discrepancies between clear and adverse weather datasets. We evaluate our model on diverse datasets, including ExDark (unimodal), Cityscapes (unimodal), and Dense (multimodal), where it ranks \(1^{st}\) in all datasets at the point in time of our evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarap, A.F.: Deep learning using rectified linear units. arXiv preprint arXiv:1803.08375 (2018)

  2. Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., Nunes, U.J.: Multimodal vehicle detection: fusing 3d-lidar and color camera data. Pattern Recogn. Lett. 115, 20–29 (2018)

    Article  Google Scholar 

  3. Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Dietmayer, K., Heide, F.: Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11682–11692 (2020)

    Google Scholar 

  4. Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige, K., et al.: Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: 2018 IEEE international conference on robotics and automation (ICRA). pp. 4243–4250. IEEE (2018)

    Google Scholar 

  5. Cai, Q., Pan, Y., Ngo, C.W., Tian, X., Duan, L., Yao, T.: Exploring object relation in mean teacher for cross-domain detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11457–11466 (2019)

    Google Scholar 

  6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 1907–1915 (2017)

    Google Scholar 

  7. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3339–3348 (2018)

    Google Scholar 

  8. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3213–3223 (2016)

    Google Scholar 

  9. Cui, Z., Qi, G.J., Gu, L., You, S., Zhang, Z., Harada, T.: Multitask aet with orthogonal tangent regularity for dark object detection. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 2553–2562 (2021)

    Google Scholar 

  10. Du, X., Ang, M.H., Rus, D.: Car detection for autonomous vehicle: Lidar and vision fusion approach through deep learning framework. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 749–754. IEEE (2017)

    Google Scholar 

  11. Eskandar, G., Marsden, R.A., Pandiyan, P., Döbler, M., Guirguis, K., Yang, B.: An unsupervised domain adaptive approach for multimodal 2d object detection in adverse weather conditions. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 10865–10872. IEEE (2022)

    Google Scholar 

  12. Feng, D., Harakeh, A., Waslander, S.L., Dietmayer, K.: A review and comparative study on probabilistic object detection in autonomous driving. IEEE Trans. Intell. Transp. Syst. 23(8), 9961–9980 (2021)

    Article  Google Scholar 

  13. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International conference on machine learning. pp. 1180–1189. PMLR (2015)

    Google Scholar 

  14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern recognition. pp. 3354–3361. IEEE (2012)

    Google Scholar 

  15. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. pp. 1440–1448 (2015)

    Google Scholar 

  16. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. Journal of field robotics 37(3), 362–386 (2020)

    Article  Google Scholar 

  17. Guan, D., Huang, J., Xiao, A., Lu, S., Cao, Y.: Uncertainty-aware unsupervised domain adaptation in object detection. IEEE Trans. Multimedia 24, 2502–2514 (2021)

    Article  Google Scholar 

  18. Hnewa, M., Radha, H.: Multiscale domain adaptive yolo for cross-domain object detection. In: 2021 IEEE International Conference on Image Processing (ICIP). pp. 3323–3327. IEEE (2021)

    Google Scholar 

  19. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell, T.: Cycada: Cycle-consistent adversarial domain adaptation. In: International conference on machine learning. pp. 1989–1998. Pmlr (2018)

    Google Scholar 

  20. Huang, S.C., Le, T.H., Jaw, D.W.: Dsnet: Joint semantic learning for object detection in inclement weather conditions. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2623–2633 (2020)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Langer, F., Milioto, A., Haag, A., Behley, J., Stachniss, C.: Domain transfer for semantic segmentation of lidar data using deep neural networks. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 8263–8270. IEEE (2020)

    Google Scholar 

  23. Li, J., Xu, R., Ma, J., Zou, Q., Ma, J., Yu, H.: Domain adaptive object detection for autonomous driving under foggy weather. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 612–622 (2023)

    Google Scholar 

  24. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  25. Loh, Y.P., Chan, C.S.: Getting to know low-light images with the exclusively dark dataset. Comput. Vis. Image Underst. 178, 30–42 (2019)

    Article  Google Scholar 

  26. Mees, O., Eitel, A., Burgard, W.: Choosing smartly: Adaptive multimodal fusion for object detection in changing environments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 151–156. IEEE (2016)

    Google Scholar 

  27. Paz, D., Zhang, H., Li, Q., Xiang, H., Christensen, H.I.: Probabilistic semantic mapping for urban autonomous driving applications. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 2059–2064. IEEE (2020)

    Google Scholar 

  28. Pfeuffer, A., Dietmayer, K.: Optimal sensor data fusion architecture for object detection in adverse weather conditions. In: 2018 21st International Conference on Information Fusion (FUSION). pp. 1–8. IEEE (2018)

    Google Scholar 

  29. Qin, Q., Chang, K., Huang, M., Li, G.: Denet: detection-driven enhancement network for object detection under adverse weather conditions. In: Proceedings of the Asian Conference on Computer Vision. pp. 2813–2829 (2022)

    Google Scholar 

  30. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  31. Schneider, L., Jasch, M., Fröhlich, B., Weber, T., Franke, U., Pollefeys, M., Rätsch, M.: Multimodal Neural Networks: RGB-D for Semantic Segmentation and Object Detection. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 98–109. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_9

  32. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27(4), 809–821 (2015)

    Article  MathSciNet  Google Scholar 

  33. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7167–7176 (2017)

    Google Scholar 

  34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  35. Wang, H., Xu, Y., He, Y., Cai, Y., Chen, L., Li, Y., Sotelo, M.A., Li, Z.: Yolov5-fog: A multiobjective visual detection algorithm for fog driving scenes based on improved yolov5. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)

    Article  Google Scholar 

  36. Wang, Z., Jia, K.: Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1742–1749. IEEE (2019)

    Google Scholar 

  37. Xu, M., Wang, H., Ni, B., Tian, Q., Zhang, W.: Cross-domain detection via graph-induced prototype alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12355–12364 (2020)

    Google Scholar 

  38. Zhang, S., Tuo, H., Hu, J., Jing, Z.: Domain adaptive yolo for one-stage cross-domain detection. In: Asian conference on machine learning. pp. 785–797. PMLR (2021)

    Google Scholar 

  39. Zhu, Y., Wang, T., Fu, X., Yang, X., Guo, X., Dai, J., Qiao, Y., Hu, X.: Learning weather-general and weather-specific features for image restoration under multiple adverse weather conditions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 21747–21758 (2023)

    Google Scholar 

Download references

Acknowledgments

The works were jointly supported by the Suzhou Science and Technology Development Planning Programme (Grant No.ZXL2023171) and XJTLU Research Development Fund (RDF-22-01-129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Gong, H., Feng, Y., Chu, Z., Liu, H. (2025). Enhancing Object Detection in Adverse Weather Conditions Through Entropy and Guided Multimodal Fusion. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15481. Springer, Singapore. https://doi.org/10.1007/978-981-96-0972-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0972-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0971-0

  • Online ISBN: 978-981-96-0972-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics