Abstract
We study the crossing-minimization problem in a layered graph drawing of planar-embedded rooted trees whose leaves have a given total order on the first layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we describe a dynamic program running in polynomial time for the restricted case of two trees. If there are more than two trees, we restrict the number of layers to three, which allows for a reduction to a shortest-path problem. This way, we achieve XP-time in the number of trees.
J. Katheder is supported by DFG grant Ka 812-18/2 and
J. Zink is supported by DFG grant Wo 758/11-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
XP is a parameterized running-time class and an XP-algorithm has a running time in \(\mathcal {O}(|I|^{f(k)})\), where |I| is the size of the instance, f a computable function, and k the parameter. Note that every FPT-algorithm is an XP-algorithm but not vice versa.
- 2.
This is a generalization of the positions introduced in Sect. 3 where all positions were relative to (the given embedding of) \(T_1\).
References
Bodenreider, O.: The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 32(suppl_1), 267–270 (2004). https://doi.org/10.1093/nar/gkh061
Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in hierarchically structured information. ACM SIGMOD Rec. 25(2), 493–504 (1996). https://doi.org/10.1145/235968.233366
Chung, F.R.K.: On optimal linear arrangements of trees. Comput. Math. Appl. 10(1), 43–60 (1984). https://doi.org/10.1016/0898-1221(84)90085-3
Dujmovic, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica 40(1), 15–31 (2004). https://doi.org/10.1007/S00453-004-1093-2
Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994). https://doi.org/10.1007/bf01187020
Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983). https://doi.org/10.1137/0604033
Graham, M., Kennedy, J.: A survey of multiple tree visualisation. Inf. Vis. 9(4), 235–252 (2010). https://doi.org/10.1057/ivs.2009.29
Harrigan, M., Healy, P.: k-level crossing minimization Is NP-hard for trees. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 70–76. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19094-0_9
Liu, Z., Zhan, S.H., Munzner, T.: Aggregated dendrograms for visual comparison between many phylogenetic trees. IEEE Trans. Visualization Comput. Graph. 26(9), 2732–2747 (2019). https://doi.org/10.1109/tvcg.2019.2898186
Muñoz, X., Unger, W., Vrt’o, I.: One sided crossing minimization is NP-hard for sparse graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 115–123. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_10
Munzner, T., Guimbretiere, F., Tasiran, S., Zhang, L., Zhou, Y.: Treejuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility. ACM Trans. Graph. 22(3), 453–462 (2003). https://doi.org/10.1145/1201775.882291
Pavlopoulos, G.A., Soldatos, T..G, Barbosa-Silva, A., Schneider, R.: A reference guide for tree analysis and visualization. BioData Mining 3(1), 1–24 (2010). https://doi.org/10.1186/1756-0381-3-1
Puigbò, P., Wolf, Y.I., Koonin, E.V.: Search for a ‘tree of life’ in the thicket of the phylogenetic forest. J. Biol. 8(6), 1–17 (2009). https://doi.org/10.1186/jbiol159
Purchase, H.C., Carrington, D.A., Allder, J.-A.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002). https://doi.org/10.1023/A:1016344215610
Schulz, H.-J.: Treevis.net: a tree visualization reference. IEEE Comput. Graph. Appl. 31(6), 11–15 (2011). https://doi.org/10.1109/mcg.2011.103
Shahrokhi, F., Sýkora, O., Székely, L.A., Vrto, I.: On bipartite drawings and the linear arrangement problem. SIAM J. Comput. 30(6), 1773–1789 (2000). https://doi.org/10.1137/S0097539797331671
Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981). https://doi.org/10.1109/TSMC.1981.4308636
Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002). https://doi.org/10.1057/palgrave.ivs.9500013
Yang, Z., Rannala, B.: Molecular phylogenetics: principles and practice. Nat. Rev. Genet. 13(5), 303–314 (2012). https://doi.org/10.1038/nrg3186
Acknowledgments
We thank the organizers of the workshop GNV 2022 in Heiligkreuztal for the fruitful atmosphere where some of the ideas of this paper arose. We also thank the anonymous reviewers for their helpful feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Katheder, J., Kobourov, S.G., Kuckuk, A., Pfister, M., Zink, J. (2024). Simultaneous Drawing of Layered Trees. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_5
Download citation
DOI: https://doi.org/10.1007/978-981-97-0566-5_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0565-8
Online ISBN: 978-981-97-0566-5
eBook Packages: Computer ScienceComputer Science (R0)