Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simultaneous Drawing of Layered Trees

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2024)

Abstract

We study the crossing-minimization problem in a layered graph drawing of planar-embedded rooted trees whose leaves have a given total order on the first layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we describe a dynamic program running in polynomial time for the restricted case of two trees. If there are more than two trees, we restrict the number of layers to three, which allows for a reduction to a shortest-path problem. This way, we achieve XP-time in the number of trees.

J. Katheder is supported by DFG grant Ka 812-18/2 and

J. Zink is supported by DFG grant Wo 758/11-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    XP is a parameterized running-time class and an XP-algorithm has a running time in \(\mathcal {O}(|I|^{f(k)})\), where |I| is the size of the instance, f a computable function, and k the parameter. Note that every FPT-algorithm is an XP-algorithm but not vice versa.

  2. 2.

    This is a generalization of the positions introduced in Sect. 3 where all positions were relative to (the given embedding of) \(T_1\).

References

  1. Bodenreider, O.: The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 32(suppl_1), 267–270 (2004). https://doi.org/10.1093/nar/gkh061

  2. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in hierarchically structured information. ACM SIGMOD Rec. 25(2), 493–504 (1996). https://doi.org/10.1145/235968.233366

    Article  Google Scholar 

  3. Chung, F.R.K.: On optimal linear arrangements of trees. Comput. Math. Appl. 10(1), 43–60 (1984). https://doi.org/10.1016/0898-1221(84)90085-3

  4. Dujmovic, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica 40(1), 15–31 (2004). https://doi.org/10.1007/S00453-004-1093-2

    Article  MathSciNet  Google Scholar 

  5. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994). https://doi.org/10.1007/bf01187020

    Article  MathSciNet  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983). https://doi.org/10.1137/0604033

    Article  MathSciNet  Google Scholar 

  7. Graham, M., Kennedy, J.: A survey of multiple tree visualisation. Inf. Vis. 9(4), 235–252 (2010). https://doi.org/10.1057/ivs.2009.29

    Article  Google Scholar 

  8. Harrigan, M., Healy, P.: k-level crossing minimization Is NP-hard for trees. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 70–76. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19094-0_9

    Chapter  Google Scholar 

  9. Liu, Z., Zhan, S.H., Munzner, T.: Aggregated dendrograms for visual comparison between many phylogenetic trees. IEEE Trans. Visualization Comput. Graph. 26(9), 2732–2747 (2019). https://doi.org/10.1109/tvcg.2019.2898186

  10. Muñoz, X., Unger, W., Vrt’o, I.: One sided crossing minimization is NP-hard for sparse graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 115–123. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_10

    Chapter  Google Scholar 

  11. Munzner, T., Guimbretiere, F., Tasiran, S., Zhang, L., Zhou, Y.: Treejuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility. ACM Trans. Graph. 22(3), 453–462 (2003). https://doi.org/10.1145/1201775.882291

    Article  Google Scholar 

  12. Pavlopoulos, G.A., Soldatos, T..G, Barbosa-Silva, A., Schneider, R.: A reference guide for tree analysis and visualization. BioData Mining 3(1), 1–24 (2010). https://doi.org/10.1186/1756-0381-3-1

  13. Puigbò, P., Wolf, Y.I., Koonin, E.V.: Search for a ‘tree of life’ in the thicket of the phylogenetic forest. J. Biol. 8(6), 1–17 (2009). https://doi.org/10.1186/jbiol159

  14. Purchase, H.C., Carrington, D.A., Allder, J.-A.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002). https://doi.org/10.1023/A:1016344215610

    Article  Google Scholar 

  15. Schulz, H.-J.: Treevis.net: a tree visualization reference. IEEE Comput. Graph. Appl. 31(6), 11–15 (2011). https://doi.org/10.1109/mcg.2011.103

  16. Shahrokhi, F., Sýkora, O., Székely, L.A., Vrto, I.: On bipartite drawings and the linear arrangement problem. SIAM J. Comput. 30(6), 1773–1789 (2000). https://doi.org/10.1137/S0097539797331671

    Article  MathSciNet  Google Scholar 

  17. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981). https://doi.org/10.1109/TSMC.1981.4308636

    Article  MathSciNet  Google Scholar 

  18. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002). https://doi.org/10.1057/palgrave.ivs.9500013

    Article  Google Scholar 

  19. Yang, Z., Rannala, B.: Molecular phylogenetics: principles and practice. Nat. Rev. Genet. 13(5), 303–314 (2012). https://doi.org/10.1038/nrg3186

    Article  Google Scholar 

Download references

Acknowledgments

We thank the organizers of the workshop GNV 2022 in Heiligkreuztal for the fruitful atmosphere where some of the ideas of this paper arose. We also thank the anonymous reviewers for their helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Katheder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katheder, J., Kobourov, S.G., Kuckuk, A., Pfister, M., Zink, J. (2024). Simultaneous Drawing of Layered Trees. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0566-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0565-8

  • Online ISBN: 978-981-97-0566-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics