Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

WBGT Index Forecast Using Time Series Models in Smart Cities

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14490))

  • 313 Accesses

Abstract

WBGT (Wet Bulb Globe Temperature) was originally championed by the United States military and has been widely implemented in daily training to prevent casualties or injuries among soldiers due to unfavorable high temperature and humidity conditions during the summer, and it has been widely used in various fields, such as marathons, military training, and travel. Starting from the daily periodicity of WBGT, this paper uses the Holt-Winters 24 h, and discusses the feasibility of its autocorrelation prediction. The prediction results were evaluated using the time series cross-validation method and RMSE. Two experiments were conducted with the dataset acquired by NCSCO and the self-collected Dongguan University of Technology dataset(DGUT-D). First, a preliminary experiment was conducted using NCSCO data to explore the feasibility of WBGT autocorrelation pre-diction, and then the DGUT-D was used to predict the 24-h WBGT of the Songshan Lake Campus of the Dongguan University of Technology (DGUT).

Supported by the Basic and Applied Basic Research Funding Program of Guangdong Province of China (No.2019A1515110303, No.2019A1515110800, No. 2021A1515010656 and 2022B1515120059); the Open Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) (No. GMLKF-22-02); the National Natural Science Foundation of China (No. 62001113); the Guangdong University Key Project (No. 2019KZDXM012); the Guangdong Key Construction Discipline Research Ability Enhancement Project (No. 2021ZDJS086); the Guangdong University Key Project (No. 2019KZDXM012); the Dongguan Science and Technology of Social Development Program (No. 20221800902472 and No. 20211800904712); the Research Team Project of Dongguan University of Technology (No. TDY-B2019009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alrashdi, I., Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., Ming, H.: Ad-IoT: anomaly detection of IoT cyberattacks in smart city using machine learning. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0305–0310. IEEE (2019)

    Google Scholar 

  2. Bernard, P., et al.: Climate change: the next game changer for sport and exercise psychology. German J. Exercise Sport Res. 1–6 (2022)

    Google Scholar 

  3. Brito, R.C., Favarim, F., Calin, G., Todt, E.: Development of a low cost weather station using free hardware and software. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1–6. IEEE (2017)

    Google Scholar 

  4. Budd, G.M.: Wet-bulb globe temperature (wbgt)-its history and its limitations. J. Sci. Med. Sport 11(1), 20–32 (2008)

    Article  Google Scholar 

  5. Chatfield, C.: The holt-winters forecasting procedure. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 27(3), 264–279 (1978)

    Google Scholar 

  6. Chatfield, C., Yar, M.: Holt-winters forecasting: some practical issues. J. Roy. Stat. Soc. Ser. D: Stat. 37(2), 129–140 (1988)

    Google Scholar 

  7. Chen, P., Niu, A., Liu, D., Jiang, W., Ma, B.: Time series forecasting of temperatures using SARIMA: an example from Nanjing. In: IOP Conference Series: Materials Science and Engineering, vol. 394, p. 052024. IOP Publishing (2018)

    Google Scholar 

  8. Chikkakrishna, N.K., Hardik, C., Deepika, K., Sparsha, N.: Short-term traffic prediction using SARIMA and FBPROPHET. In: 2019 IEEE 16th India council international conference (INDICON), pp. 1–4. IEEE (2019)

    Google Scholar 

  9. Coulby, G., Clear, A.K., Jones, O., Godfrey, A.: Low-cost, multimodal environmental monitoring based on the internet of things. Build. Environ. 203, 108014 (2021)

    Article  Google Scholar 

  10. Dabral, P., Murry, M.Z.: Modelling and forecasting of rainfall time series using SARIMA. Environ. Processes 4(2), 399–419 (2017)

    Article  Google Scholar 

  11. Ely, M.R., Cheuvront, S.N., Roberts, W.O., Montain, S.J.: Impact of weather on marathon-running performance. Med. Sci. Sports Exerc. 39(3), 487–493 (2007)

    Article  Google Scholar 

  12. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20(1), 5–10 (2004)

    Article  Google Scholar 

  13. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts (2018)

    Google Scholar 

  14. Kalekar, P.S., et al.: Time series forecasting using holt-winters exponential smoothing. Kanwal Rekhi school of information Technology 4329008(13), 1–13 (2004)

    Google Scholar 

  15. Kashimura, O., Minami, K., Hoshi, A.: Prediction of WBGT for the Tokyo 2020 Olympic marathon. Japn. J. Biometeorol. 53(4), 139–144 (2016)

    Google Scholar 

  16. Khan, L.U., Saad, W., Han, Z., Hossain, E., Hong, C.S.: Federated learning for internet of things: recent advances, taxonomy, and open challenges. IEEE Commun. Surv. Tutor. 23(3), 1759–1799 (2021)

    Article  Google Scholar 

  17. Lemke, B., Kjellstrom, T.: Calculating workplace WBGT from meteorological data: a tool for climate change assessment. Ind. Health 50(4), 267–278 (2012)

    Article  Google Scholar 

  18. Moran, D.S., et al.: An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J. Therm. Biol. 26(4–5), 427–431 (2001)

    Article  Google Scholar 

  19. Oka, K., Honda, Y., Phung, V.L.H., Hijioka, Y.: Potential effect of heat adaptation on association between number of heatstroke patients transported by ambulance and wet bulb globe temperature in japan. Environ. Res. 216, 114666 (2023)

    Article  Google Scholar 

  20. Samal, K.K.R., Babu, K.S., Das, S.K., Acharaya, A.: Time series based air pollution forecasting using SARIMA and prophet model. In: proceedings of the 2019 international conference on information technology and computer communications, pp. 80–85 (2019)

    Google Scholar 

  21. Schneider, S.: Sport and climate change-how will climate change affect sport? (2021)

    Google Scholar 

  22. Tao, M., Li, X., Yuan, H., Wei, W.: UAV-aided trustworthy data collection in federated-WSN-enabled IoT applications. Inf. Sci. 532, 155–169 (2020)

    Article  Google Scholar 

  23. Tao, M., Ota, K., Dong, M.: Locating compromised data sources in IoT-enabled smart cities: a great-alternative-region-based approach. IEEE Trans. Industr. Inf. 14(6), 2579–2587 (2018)

    Article  Google Scholar 

  24. Tao, M., Sun, G., Wang, T.: Urban mobility prediction based on LSTM and discrete position relationship model. In: 2020 16th International Conference on Mobility, Sensing and Networking (MSN), pp. 473–478. IEEE (2020)

    Google Scholar 

  25. Toharudin, T., Pontoh, R.S., Caraka, R.E., Zahroh, S., Lee, Y., Chen, R.C.: Employing long short-term memory and facebook prophet model in air temperature forecasting. Commun. Stat.-Simul. Comput. 52(2), 279–290 (2023)

    Article  MathSciNet  Google Scholar 

  26. Willett, K.M., Sherwood, S.: Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. 32(2), 161–177 (2012)

    Article  Google Scholar 

  27. Yaglou, C., Minaed, D., et al.: Control of heat casualties at military training centers. Arch. Indust. Health 16(4), 302–16 (1957)

    Google Scholar 

  28. Yeargin, S., Hirschhorn, R., Grundstein, A., Arango, D., Graham, A., Krebs, A., Turner, S.: Variations of wet-bulb globe temperature across high school athletics in south carolina. Int. J. Biometeorol. 67(5), 735–744 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, K., Huang, Y., Tao, M., Xie, R., Li, X., Zhong, X. (2024). WBGT Index Forecast Using Time Series Models in Smart Cities. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14490. Springer, Singapore. https://doi.org/10.1007/978-981-97-0859-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0859-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0858-1

  • Online ISBN: 978-981-97-0859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics