Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automated Pediatric Bone Age Assessment Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Technologies and Applications of Artificial Intelligence (TAAI 2023)

Abstract

Pediatric medicine widely uses bone age determination to assess skeletal maturity and identify developmental disorders early. However, manual assessment methods are subjective and lack consistency. To address this, we suggest using image preprocessing to isolate vital areas in hand X-rays and enhance features. We then enhance the Inception-V4 model to extract features from these images, integrating gender as a crucial reference. Our model, validated on a large dataset, demonstrates superior bone age prediction compared to prior methods. These automated models offer precise and reliable tools for clinical assessments, showing significant potential for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alblwi, A., Baksh, M., Barner, K.E.: Bone age assessment based on salient object segmentation. In: 2021 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–5. IEEE (2021)

    Google Scholar 

  2. Brian Shaler, DanGill, M.M.M.P.W.C.: Carvana image masking challenge (2017). https://kaggle.com/competitions/carvana-image-masking-challenge

  3. Ding, L., Zhao, K., Zhang, X., Wang, X., Zhang, J.: A lightweight u-net architecture multi-scale convolutional network for pediatric hand bone segmentation in x-ray image. IEEE Access 7, 68436–68445 (2019)

    Article  Google Scholar 

  4. Garn, S.M.: Radiographic atlas of skeletal development of the hand and wrist. Am. J. Hum. Genet. 11(3), 282 (1959)

    Google Scholar 

  5. Giordano, D., Leonardi, R., Maiorana, F., Scarciofalo, G., Spampinato, C.: Epiphysis and metaphysis extraction and classification by adaptive thresholding and dog filtering for automated skeletal bone age analysis. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6551–6556. IEEE (2007)

    Google Scholar 

  6. Halabi, S.S., et al.: The RSNA pediatric bone age machine learning challenge. Radiology 290(2), 498–503 (2019)

    Article  Google Scholar 

  7. King, D.G., et al.: Reproducibility of bone ages when performed by radiology registrars: an audit of tanner and Whitehouse ii versus greulich and pyle methods. Br. J. Radiol. 67, 801 (1994)

    Article  Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. Lv, Y., Wang, J., Wu, W., Pan, Y.: Performance comparison of deep learning methods on hand bone segmentation and bone age assessment. In: 2022 International Conference on Culture-Oriented Science and Technology (CoST), pp. 375–380. IEEE (2022)

    Google Scholar 

  10. Malina, R.M., Beunen, G.P.: Assessment of skeletal maturity and prediction of adult height (TW3 method) (2002)

    Google Scholar 

  11. Pietka, E., Gertych, A., Pospiech, S., Cao, F., Huang, H., Gilsanz, V.: Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans. Med. Imaging 20(8), 715–729 (2001)

    Article  Google Scholar 

  12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  15. Van Steenkiste, T., et al.: Automated assessment of bone age using deep learning and gaussian process regression. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 674–677. IEEE (2018)

    Google Scholar 

  16. Wu, E., et al.: Residual attention based network for hand bone age assessment. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1158–1161. IEEE (2019)

    Google Scholar 

  17. Xu, X., Xu, H., Li, Z.: Automated bone age assessment: a new three-stage assessment method from coarse to fine. In: Healthcare, vol. 10, p. 2170. MDPI (2022)

    Google Scholar 

  18. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graphics gems pp. 474–485 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Yuan Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hsu, FC., Tsai, MC., Hsieh, SY. (2024). Automated Pediatric Bone Age Assessment Using Convolutional Neural Networks. In: Lee, CY., Lin, CL., Chang, HT. (eds) Technologies and Applications of Artificial Intelligence. TAAI 2023. Communications in Computer and Information Science, vol 2075. Springer, Singapore. https://doi.org/10.1007/978-981-97-1714-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1714-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1713-2

  • Online ISBN: 978-981-97-1714-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics