Abstract
Xiaohongshu’s search daily serves tens of millions active users in social networks, that presents a challenge to existing log-based embedding based retrieval (EBR) system: how to endorse individual document exposure fairness to diversify the search results. Conventional EBR models optimize relevance between query and document by leveraging massive user behavior data, e.g. clicks, purchase, etc., however, search log derived retrieval outcomes can deviate from true relevance distribution, that may result in less opportunity to retrieve for low-popularity or long-tailed documents. To address this problem, in this study, we propose a novel semi-supervised model, Gaussian process based contrastive learning (GPCL), which minimizes the discrepancy between model prediction distribution and true relevance distribution via taking advantage of contrastive samples adaptively generated from small human-labeled data. We validated the effectiveness of the proposed methodology by comparing with a set of baselines and observed significant metrics gains via online A/B testing. We discuss the entire system including model deployment and parameter-tuning. Also the new dataset is publicly available, which associates manually labeled relevance samples and massive click-logs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Please contact any author to access the data.
References
Aumüller, M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks: a benchmarking tool for approximate nearest neighbor algorithms. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10649, pp. 34–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_3
Beutel, A., et al.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2212–2220 (2019)
Biega, A.J., Gummadi, K.P., Weikum, G.: Equity of attention: amortizing individual fairness in rankings. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 405–414 (2018)
Ekstrand, M.D., McDonald, G., Raj, A., Johnson, I., Warncke-Wang, M.: TREC 2021 fair ranking track participant instructions (2021)
Fan, M., Guo, J., Zhu, S., Miao, S., Sun, M., Li, P.: MOBIUS: towards the next generation of query-ad matching in Baidu’s sponsored search. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2509–2517 (2019)
Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259–268 (2015)
Grbovic, M., Cheng, H.: Real-time personalization using embeddings for search ranking at Airbnb. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 311–320 (2018)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Huang, J.T., et al.: Embedding-based retrieval in Facebook search. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2553–2561 (2020)
Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 2333–2338 (2013)
Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)
Joachims, T., et al.: Evaluating retrieval performance using clickthrough data (2003)
Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7, 535–547 (2019)
Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 35–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_3
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196. PMLR (2014)
Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824–836 (2018)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Palangi, H., et al.: Semantic modelling with long-short-term memory for information retrieval. arXiv preprint arXiv:1412.6629 (2014)
Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 560–568 (2008)
Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 101–110 (2014)
ACM SIG-KDD: DeepWalk: online learning of social representations (2014)
Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2219–2228 (2018)
Singh, A., Joachims, T.: Policy learning for fairness in ranking. arXiv preprint arXiv:1902.04056 (2019)
Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision, vol. 3, pp. 1470–1470. IEEE Computer Society (2003)
Sun, F., et al.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer, pp. 1441–1450 (2019)
Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808 (2020)
Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond disparate treatment & disparate impact: learning classification without disparate mistreatment. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1171–1180 (2017)
Zehlike, M., Castillo, C.: Reducing disparate exposure in ranking: a learning to rank approach. In: Proceedings of The Web Conference 2020, pp. 2849–2855 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Huang, H., Bai, Y., Liang, H., Liu, X. (2024). IR Embedding Fairness Inspection via Contrastive Learning and Human-AI Collaborative Intelligence. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14648. Springer, Singapore. https://doi.org/10.1007/978-981-97-2238-9_11
Download citation
DOI: https://doi.org/10.1007/978-981-97-2238-9_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2240-2
Online ISBN: 978-981-97-2238-9
eBook Packages: Computer ScienceComputer Science (R0)