Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MFF-Trans: Multi-level Feature Fusion Transformer for Fine-Grained Visual Classification

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

In fine-grained visual classification, fusing both local and global information is crucial. However, current methods based on vision transformer tend to just focus on selecting discriminative patch tokens, which ignore the variation of rich global and semantic information in classification tokens at different layers. To address this limitation, we propose a novel framework dubbed MFF-Trans that considers the mutual relationships between all tokens. Specifically, we put forward the important token election module (ITEM) which utilizes multi-headed self-attention mechanism in vision transformer to evaluate the importance of all tokens. This module will guide the model to select tokens which contain discriminative local information and global information with different semantics at each ViT layer. Meanwhile, to enhance the model’s perception of semantic connection between selected patch tokens, we further introduce the semantic connection enhancing module (SCEM) which use the graph convolutional network to mine the structural information between them in deep layers of vision transformer. Extensive experimental results on three benchmark datasets indicate that MFF-Trans achieves satisfactory performance compared with other methods. We achieve good results in CUB (92.1%), Stanford Cars (95.4%), and Stanford Dogs (92.3%).

This work is supported by the Basic Research for National Defense under Grant Nos. JCKY2020605C003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chou, P.Y., Lin, C.H., Kao, W.C.: A novel plug-in module for fine-grained visual classification. arXiv e-prints pp. arXiv–2202 (2022)

    Google Scholar 

  2. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  3. Ge, W., Lin, X., Yu, Y.: Weakly supervised complementary parts models for fine-grained image classification from the bottom up. In: IEEE Conference on Computer Vision & Pattern Recognition (2019)

    Google Scholar 

  4. He, J., et al.: TransFG: a transformer architecture for fine-grained recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 852–860 (2022)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42, 386–397 (2017)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hu, T., Qi, H., Huang, Q., Lu, Y.: See better before looking closer: weakly supervised data augmentation network for fine-grained visual classification. arXiv preprint arXiv:1901.09891 (2019)

  8. Hu, Y., et al.: RAMS-TRANS: recurrent attention multi-scale transformer for fine-grained image recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4239–4248 (2021)

    Google Scholar 

  9. Liu, C., Xie, H., Zha, Z.J., Ma, L., Zhang, Y.: Filtration and distillation: enhancing region attention for fine-grained visual categorization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 7, pp. 11555–11562 (2020)

    Google Scholar 

  10. Liu, X., Wang, L., Han, X.: Transformer with peak suppression and knowledge guidance for fine-grained image recognition. Neurocomputing 492, 137–149 (2022)

    Article  Google Scholar 

  11. Rao, Y., Chen, G., Lu, J., Zhou, J.: Counterfactual attention learning for fine-grained visual categorization and re-identification. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1005–1014. IEEE Computer Society (2021)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  14. Sun, H., He, X., Peng, Y.: SIM-Trans: structure information modeling transformer for fine-grained visual categorization. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5853–5861 (2022)

    Google Scholar 

  15. Sun, M., Yuan, Y., Zhou, F., Ding, E.: Multi-attention multi-class constraint for fine-grained image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 834–850. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_49

    Chapter  Google Scholar 

  16. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Rabinovich, A.: Going deeper with convolutions. IEEE Computer Society (2014)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  18. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset. California Institute of Technology (2011)

    Google Scholar 

  19. Wang, J., Yu, X., Gao, Y.: Feature fusion vision transformer for fine-grained visual categorization. In: BMVC 2021 (2021)

    Google Scholar 

  20. Wei, X.S., Xie, C.W., Wu, J.: Mask-CNN: localizing parts and selecting descriptors for fine-grained image recognition. arXiv preprint arXiv:1605.06878 (2016)

  21. Zhang, Y., et al.: A free lunch from ViT: adaptive attention multi-scale fusion transformer for fine-grained visual recognition. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3234–3238. IEEE (2022)

    Google Scholar 

  22. Zhu, H., Ke, W., Li, D., Liu, J., Tian, L., Shan, Y.: Dual cross-attention learning for fine-grained visual categorization and object re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4692–4702 (2022)

    Google Scholar 

  23. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13130–13137 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Hang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hang, Q., Yan, X., Gong, L. (2024). MFF-Trans: Multi-level Feature Fusion Transformer for Fine-Grained Visual Classification. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14333. Springer, Singapore. https://doi.org/10.1007/978-981-97-2387-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2387-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2386-7

  • Online ISBN: 978-981-97-2387-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics