Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Face Super-Resolution via Progressive-Scale Boosting Network

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14332))

  • 335 Accesses

Abstract

Deep-learning-based face super-resolution (FSR) algorithms have performed more than traditional algorithms. However, existing methods need to pass multi-scale priors effectively constrained models. To alleviate this problem, we propose a progressive-scale boosting network framework, called PBN, which enables the progressive extraction of high-frequency information from low-resolution (LR) to reconstruct high-resolution (HR) face images. To ensure the accuracy of obtaining high-frequency signals, we introduce a constraint from HR to LR, which constructs supervised learning by progressively downsampling the reconstructed image to an LR space. Specifically, we propose a triple-attention fusion block to focus on different local features and prevent the secondary loss of facial structural information by removing the pooling layers. Experiments demonstrate the superior performance of the proposed method quantitatively and qualitatively on three widely used public face datasets (i.e., CelebA, FFHQ, and LFW) compared to existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, N., Zhou, L., Xie, Z., Zheng, J., Zhang, L.: Multi-level u-net network for image super-resolution reconstruction. Displays 73, 102192 (2022)

    Article  Google Scholar 

  2. Guo, Y., et al.: Closed-loop matters: dual regression networks for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5407–5416 (2020)

    Google Scholar 

  3. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  4. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  5. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  6. Yang, X., et al.: Enhanced discriminative generative adversarial network for face super-resolution. In: Hong, R., Cheng, W.-H., Yamasaki, T., Wang, M., Ngo, C.-W. (eds.) PCM 2018. LNCS, vol. 11165, pp. 441–452. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00767-6_41

    Chapter  Google Scholar 

  7. Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: Fsrnet: end-to-end learning face super-resolution with facial priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2492–2501 (2018)

    Google Scholar 

  8. Ma, C., Jiang, Z., Rao, Y., Lu, J., Zhou, J.: Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5569–5578 (2020)

    Google Scholar 

  9. Jiang, K., Wang, Z., Yi, P., Tao, L., Jiang, J., Xiong, Z.: Dual-path deep fusion network for face image hallucination. IEEE Trans. Neural Netw. Learn. Syst. 33(1), 378–391 (2020)

    Article  Google Scholar 

  10. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-srnet: a wavelet-based CNN for multi-scale face super resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1689–1697 (2017)

    Google Scholar 

  11. Grm, K., Scheirer, W.J., Štruc, V.: Face hallucination using cascaded super-resolution and identity priors. IEEE Trans. Image Process. 29, 2150–2165 (2019)

    Google Scholar 

  12. Wang, H., Qian, H., Chengdong, W., Chi, J., Xiaosheng, Yu., Hao, W.: Dclnet: dual closed-loop networks for face super-resolution. Knowl.-Based Syst. 222, 106987 (2021)

    Google Scholar 

  13. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, pp. 3–19 (2018)

    Google Scholar 

  15. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision, pp. 286–301 (2018)

    Google Scholar 

  16. Kim, J., Li, G., Yun, I., Jung, C., Kim, J.: Edge and identity preserving network for face super-resolution. Neurocomputing 446, 11–22 (2021)

    Article  Google Scholar 

  17. Lu, T., et al.: Face hallucination via split-attention in split-attention network. In: Proceedings of the ACM International Conference on Multimedia, pp. 5501–5509 (2021)

    Google Scholar 

  18. Zhao, K., Lu, T., Zhang, Y., Wang, Y., Wang, Y.: Face super-resolution via triple-attention feature fusion network. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 105(4), 748–752 (2022)

    Google Scholar 

  19. Liu, J., Zhang, W., Tang, Y., Tang, J., Wu, G.: Residual feature aggregation network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2359–2368 (2020)

    Google Scholar 

  20. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3867–3876 (2019)

    Google Scholar 

  21. Wang, Yu., Tao, L., Zhihao, W., Yuntao, W., Zhang, Y.: Face super-resolution via hierarchical multi-scale residual fusion network. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 104(9), 1365–1369 (2021)

    Google Scholar 

  22. Cheng, F., Lu, T., Wang, Y., Zhang, Y.: Face super-resolution through dual-identity constraint. In: Proceedings of the IEEE/CVF International Conference on Multimedia and Expo, pp. 1–6. IEEE (2021)

    Google Scholar 

  23. Gao, G., Wang, Z., Li, J., Li, W., Yu, Y., Zeng, T.: Lightweight bimodal network for single-image super-resolution via symmetric CNN and recursive transformer. arXiv preprint arXiv:2204.13286 (2022)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 6207235 and Grant 62171328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Lu, T., Wang, J., Xu, A. (2024). Face Super-Resolution via Progressive-Scale Boosting Network. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2390-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2389-8

  • Online ISBN: 978-981-97-2390-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics