Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards an In-Depth Comprehension of Case Relevance for Better Legal Retrieval

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI-isAI 2024)

Abstract

Legal retrieval techniques play an important role in preserving the fairness and equality of the judicial system. As an annually well-known international competition, COLIEE aims to advance the development of state-of-the-art retrieval models for legal texts. This paper elaborates on the methodology employed by the TQM team in COLIEE2024. Specifically, we explored various lexical matching and semantic retrieval models, with a focus on enhancing the understanding of case relevance. Additionally, we endeavor to integrate various features using the learning-to-rank technique. Furthermore, fine heuristic pre-processing and post-processing methods have been proposed to mitigate irrelevant information. Consequently, our methodology achieved remarkable performance in COLIEE2024, securing first place in Task 1 and third place in Task 3. We anticipate that our proposed approach can contribute valuable insights to the advancement of legal retrieval technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Althammer, S., Askari, A., Verberne, S., Hanbury, A.: DoSSIER@ COLIEE 2021: leveraging dense retrieval and summarization-based re-ranking for case law retrieval. arXiv preprint arXiv:2108.03937 (2021)

  2. Bench-Capon, T., et al.: A history of AI and law in 50 papers: 25 years of the international conference on AI and law. Artif. Intell. Law 20(3), 215–319 (2012)

    Article  Google Scholar 

  3. Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: Legal-BERT: the muppets straight out of law school. arXiv preprint arXiv:2010.02559 (2020)

  4. Chen, J., Li, H., Su, W., Ai, Q., Liu, Y.: THUIR at WSDM cup 2023 task 1: unbiased learning to rank (2023)

    Google Scholar 

  5. Chen, J., et al.: Axiomatically regularized pre-training for ad hoc search. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1524–1534 (2022)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Dong, Q., et al.: I3 retriever: incorporating implicit interaction in pre-trained language models for passage retrieval. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 441–451 (2023)

    Google Scholar 

  8. Han, X., Tu, Y., Li, H., Ai, Q., Liu, Y.: THUIR_SS at the NTCIR-17 session search (SS) task. (No Title) (2023)

    Google Scholar 

  9. Huang, Z., et al.: Context-aware legal citation recommendation using deep learning. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, pp. 79–88 (2021)

    Google Scholar 

  10. Jiang, J.Y., Zhang, M., Li, C., Bendersky, M., Golbandi, N., Najork, M.: Semantic text matching for long-form documents. In: The World Wide Web Conference, pp. 795–806 (2019)

    Google Scholar 

  11. Jiang, Z., El-Jaroudi, A., Hartmann, W., Karakos, D., Zhao, L.: Cross-lingual information retrieval with BERT. arXiv preprint arXiv:2004.13005 (2020)

  12. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906 (2020)

  13. Kim, M.Y., Rabelo, J., Babiker, H.K.B., Rahman, M.A., Goebel, R.: Legal information retrieval and entailment using transformer-based approaches. Rev. Socionetwork Strategies 1–21 (2024)

    Google Scholar 

  14. Li, H., et al.: SAILER: structure-aware pre-trained language model for legal case retrieval (2023)

    Google Scholar 

  15. Li, H., et al.: Constructing tree-based index for efficient and effective dense retrieval (2023)

    Google Scholar 

  16. Li, H., Chen, J., Su, W., Ai, Q., Liu, Y.: Towards better web search performance: pre-training, fine-tuning and learning to rank. arXiv preprint arXiv:2303.04710 (2023)

  17. Li, H., Shao, Y., Wu, Y., Ai, Q., Ma, Y., Liu, Y.: LeCaRDv2: a large-scale Chinese legal case retrieval dataset (2023)

    Google Scholar 

  18. Li, H., Su, W., Wang, C., Wu, Y., Ai, Q., Liu, Y.: THUIR@COLIEE 2023: incorporating structural knowledge into pre-trained language models for legal case retrieval (2023)

    Google Scholar 

  19. Li, H., Wang, C., Su, W., Wu, Y., Ai, Q., Liu, Y.: THUIR@COLIEE 2023: More parameters and legal knowledge for legal case entailment (2023)

    Google Scholar 

  20. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  21. Ma, Y., et al.: LeCaRD: a legal case retrieval dataset for Chinese law system. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2342–2348 (2021)

    Google Scholar 

  22. Nogueira, R., Jiang, Z., Lin, J.: Document ranking with a pretrained sequence-to-sequence model. arXiv preprint arXiv:2003.06713 (2020)

  23. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: BM25 and beyond. Found. Trends® Inf. Retrieval 3(4), 333–389 (2009)

    Google Scholar 

  24. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for machine comprehension. arXiv preprint arXiv:1611.01603 (2016)

  25. Shao, Y., et al.: An intent taxonomy of legal case retrieval. ACM Trans. Inf. Syst. 42(2) (2023). https://doi.org/10.1145/3626093

  26. Shao, Y., et al.: BERT-PLI: modeling paragraph-level interactions for legal case retrieval. In: IJCAI, pp. 3501–3507 (2020)

    Google Scholar 

  27. Tran, V., Nguyen, M.L., Satoh, K.: Building legal case retrieval systems with lexical matching and summarization using a pre-trained phrase scoring model. In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law, pp. 275–282 (2019)

    Google Scholar 

  28. Tu, Y., Li, H., Chu, Z., Ai, Q., Liu, Y.: THUIR at the NTCIR-17 FairWeb-1 task: an initial exploration of the relationship between relevance and fairness. In: Proceedings of NTCIR-17 (2023). https://doi.org/10.20736/0002001317

  29. Xiao, C., Hu, X., Liu, Z., Tu, C., Sun, M.: Lawformer: a pre-trained language model for Chinese legal long documents. AI Open 2, 79–84 (2021)

    Article  Google Scholar 

  30. Xie, X., et al.: T2Ranking: a large-scale Chinese benchmark for passage ranking. arXiv preprint arXiv:2304.03679 (2023)

  31. Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808 (2020)

  32. Yang, S., et al.: THUIR at the NTCIR-16 WWW-4 task. In: Proceedings of NTCIR-16 (2022)

    Google Scholar 

  33. Yu, W., et al.: Explainable legal case matching via inverse optimal transport-based rationale extraction. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 657–668 (2022)

    Google Scholar 

  34. Zhai, C.: Statistical language models for information retrieval. Synthesis Lect. Hum. Lang. Technol. 1(1), 1–141 (2008)

    Article  Google Scholar 

  35. Zhang, K., Chen, C., Wang, Y., Tian, Q., Bai, L.: CFGL-LCR: a counterfactual graph learning framework for legal case retrieval. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3332–3341 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H. et al. (2024). Towards an In-Depth Comprehension of Case Relevance for Better Legal Retrieval. In: Suzumura, T., Bono, M. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2024. Lecture Notes in Computer Science(), vol 14741. Springer, Singapore. https://doi.org/10.1007/978-981-97-3076-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3076-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3075-9

  • Online ISBN: 978-981-97-3076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics