Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LightNet+: Boosted Light-Weighted Network for Smoke Semantic Segmentation

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2066))

  • 243 Accesses

Abstract

Smoke is a crucial indicator of early fires and gas leaks. By segmentation of smoke in the image, the detailed information such as smoke direction of spread, and source location can be obtained. Considering the popularity of video surveillance systems, smoke segmentation is of great significance. This paper uses an efficient boosted light-weighted network for smoke semantic segmentation with only 0.53M network parameters. Firstly, we propose a novel Smoke Feature Extractor (SFE) to improve the capability of smoke feature representation in encoders. The SFE achieves scale invariance by repeatedly stacking Multi-scale Foreground Enhancement Module (MSFEM) at different coding stages. The MSFEM increases the field of view of features by down-sampling the feature maps, and fusing information from different scale spaces into weights to enhance smoke foreground information. Secondly, we propose a novel Attention-guided Coupled Feature Fusion Module (ACFFM) that introduces Self-Refinement Coefficients (SRCs) generated from cross-layer fusion to weight the original layer images. This two-stage fusion approach effectively utilizes information from different scales to alleviate the impact of scale changes and performs hierarchical decoding. ACFFM serves as a step-by-step recovery model that guides cross-level feature mapping. It retains the original feature size to capture local information, while effectively preventing small objects from being ignored. Finally, we propose a Smoke Feature Decoder (SFD) and utilize a Global Coefficient Path to further aggregate feature expression capabilities. The smoke feature decoder fuses the outputs from different levels of ACFFM and weights them with deep global semantic attention coefficients. Experimental results on synthetic and forest smoke datasets show the effectiveness and superiority of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Muhammad, K., Khan, S., Baik, S.W.: Efficient convolutional neural networks for fire detection in surveillance applications. In: Deep Learning in Computer Vision: Principles and Applications (2020)

    Google Scholar 

  2. Finney, M.A.: The wildland fire system and challenges for engineering. Fire Saf. J. (2020)

    Google Scholar 

  3. Muhammad, K., Hussain, T., Tanveer, M., Sannino, G., de Albuquerque, V.: Cost-effective video summarization using deep CNN with hierarchical weighted fusion for IoT surveillance networks. IEEE Internet Things J. 7(5), 4455–4463 (2020)

    Article  Google Scholar 

  4. Cui, F.: Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Comput. Commun. 150, 818–827 (2020)

    Article  Google Scholar 

  5. Yuan, F., Zhang, L., Xia, X., Huang, Q., Li, X.: A wave-shaped deep neural network for smoke density estimation. IEEE Trans. Image Process. 29, 2301–2313 (2020)

    Article  Google Scholar 

  6. ByoungChul, K., JunOh, P., Jae-Yeal, N.: Spatiotemporal bag-of-features for early wildfire smoke detection. Image Vis. Comput. 31(10), 786–795 (2013)

    Article  Google Scholar 

  7. Muhammad, K., Ahmad, J., Lv, Z., Bellavista, P., Yang, P., Baik, S.W.: Efficient deep CNN-based fire detection and localization in video surveillance applications. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–16 (2018)

    Google Scholar 

  8. Jing, T., Meng, Q., Hou, H.: SmokeSeger: a transformer-CNN coupled model for urban scene smoke segmentation. IEEE Trans. Ind. Inform. (2023)

    Google Scholar 

  9. Nguyen, T.K.T., Kim, J.M.: Multistage optical smoke detection approach for smoke alarm systems. Opt. Eng. 52(5) (2013)

    Google Scholar 

  10. Dimitropoulos, K., Barmpoutis, P., Grammalidis, N.: Higher order linear dynamical systems for smoke detection in video surveillance applications. IEEE Trans. Circuits Syst. Video Technol. 27(5), 1143–1154 (2017)

    Article  Google Scholar 

  11. Zhao, Y.: Candidate smoke region segmentation of fire video based on rough set theory. J. Electr. Comput. Eng. (2015)

    Google Scholar 

  12. Wang, H., Chen, Y.A.: Smoke image segmentation algorithm based on rough set and region growing. J. Forest Sci. 65(8) (2019)

    Google Scholar 

  13. Tung, T., Kim, J.: An effective four-stage smoke-detection algorithm using video images for early fire-alarm systems. Fire Saf. J. 46(5), 276–282 (2011)

    Article  Google Scholar 

  14. Filonenko, A., Hernandez, D.C., Jo, K.-H.: Fast smoke detection for video surveillance using CUDA. IEEE Trans. Ind. Inf. 14(2), 725–733 (2018)

    Article  Google Scholar 

  15. Yuan, F.: A fast accumulative motion orientation model based on integral image for video smoke detection. Pattern Recognit. Lett. 29(7), 925–932 (2008)

    Article  Google Scholar 

  16. Tian, H., Li, W., Ogunbona, P.O., Wang, L.: Detection and separation of smoke from single image frames. IEEE Trans. Image Process. 27(3), 1164–1177 (2018)

    Article  MathSciNet  Google Scholar 

  17. Yuan, F., Fang, Z., Wu, S., Yang, Y., Fang, Y.: Real-time image smoke detection using staircase searching-based dual threshold AdaBoost and dynamic analysis. IET Image Process. 9(10), 849–856 (2015)

    Article  Google Scholar 

  18. Appana, D.K., Islam, M.R., Khan, S.A., Kim, J.: A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems. Inf. Sci. 418, 91–101 (2017)

    Article  Google Scholar 

  19. Alamgir, N., Nguyen, K., Chandran, V., Boles, W.: Combining multi-channel color space with local binary co-occurrence feature descriptors for accurate smoke detection from surveillance videos. Fire Saf. J. 102, 1–10 (2018)

    Google Scholar 

  20. Yuan, F., Zhang, L., Xia, X., Wan, B., Huang, Q., Li, X.: Deep smoke segmentation. Neurocomputing 357(10), 248–260 (2019)

    Article  Google Scholar 

  21. Frizzi, S., Bouchouicha, M., Ginoux, J.-M., Moreau, E., Sayadi, M.: Convolutional neural network for smoke and fire semantic segmentation. IET Image Process. 15(6), 634–647 (2021)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representation (2014)

    Google Scholar 

  23. Wang, Y., Luo, Z., Chen, D., Li, Y.: Semantic segmentation of fire and smoke images based on dual attention mechanism. In: 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC), pp. 185–190 (2022)

    Google Scholar 

  24. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

  25. Kundu, S., Maulik, U., Sheshanarayana, R., Ghosh, S.: Vehicle smoke synthesis and attention-based deep approach for vehicle smoke detection. IEEE Trans. Ind. Appl. 59(2), 2581–2589 (2023)

    Article  Google Scholar 

  26. Cao, Y., Tang, Q., Wu, X., Lu, X.: EFFNet: Enhanced feature foreground network for video smoke source prediction and detection. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1820–1833 (2022)

    Article  Google Scholar 

  27. Tao, H., Duan, Q., Lu, M., Hu, Z.: Learning discriminative feature representation with pixel-level supervision for forest smoke recognition. Pattern Recognit. 143 (2023)

    Google Scholar 

  28. Yuan, F., Dong, Z., Zhang, L., Xia, X., Shi, J.: Cubic-cross convolutional attention and count prior embedding for smoke segmentation. Pattern Recognit. 131 (2022)

    Google Scholar 

  29. Xia, X., Zhan, K., Peng, Y., Fang, Y.: Texture-aware network for smoke density estimation. In: IEEE International Conference on Visual Communications and Image Processing, pp. 1–5 (2022)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  31. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. (2017)

    Google Scholar 

  32. Anim Hossain, F.M., Zhang, Y.: MsFireD-Net: a lightweight and efficient convolutional neural network for flame and smoke segmentation. J. Autom. Intell. 2(3), 130–138 (2023)

    Google Scholar 

  33. Xia, W., Yu, F., Wang, H., Hong, R.: A high-precision lightweight smoke detection model based on SE attention mechanism. In: 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 941–944 (2022)

    Google Scholar 

  34. Yuan, F., Li, K. , Wang, C., Fang, Z.: A lightweight network for smoke semantic segmentation. Pattern Recognit. (2023)

    Google Scholar 

  35. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENET: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  36. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  37. Wei, J., Wang, S.H., Huang, Q.M.: F3Net: fusion, feedback and focus for salient object detection. In: AAAI (2020)

    Google Scholar 

  38. Romera, E., Álvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2018)

    Article  Google Scholar 

  39. Wang, Y., Zhou, Q., Liu, J., Xiong, J., Latecki. L.J.: LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1860–1864 (2019)

    Google Scholar 

  40. Li, H., Xiong, P., Fan, H., Sun, J.: DFANet: deep feature aggregation for real-time semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9514–9523 (2019)

    Google Scholar 

  41. Wu, T., Tang, S., Zhang, R., Cao, J., Zhang, Y.: CGNet: a light-weight context guided network for semantic segmentation. IEEE Trans. Image Process. 30, 1169–1179 (2021)

    Article  Google Scholar 

  42. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

  43. Guo, W., Xiao, X., Hui, Y., Yang, W., Sadovnik, A.: Heterogeneous attention nested u-shaped network for blur detection. IEEE Signal Process. Lett. 29, 140–144 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (61862029), and Capacity Construction Project of Shanghai Local Colleges (23010504100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiniu Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, K., Wang, C., Meng, C., Yuan, F. (2024). LightNet+: Boosted Light-Weighted Network for Smoke Semantic Segmentation. In: Zhai, G., Zhou, J., Ye, L., Yang, H., An, P., Yang, X. (eds) Digital Multimedia Communications. IFTC 2023. Communications in Computer and Information Science, vol 2066. Springer, Singapore. https://doi.org/10.1007/978-981-97-3623-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3623-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3622-5

  • Online ISBN: 978-981-97-3623-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics