Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Sparse Binary Data Clustering Method for Transaction Data

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Applications (IEA/AIE 2024)

Abstract

Cluster analysis is an important approach in data mining, yet binary data has received less attention compared to categorical and numerical data. Thus, this study intends to address this gap by concentrating on the clustering of sparse binary data with high dimensions. It introduces a novel method that integrates the sparse binary dimensionality reduction method with a particle swarm optimization (PSO) algorithm-based fuzzy K-modes algorithm. The proposed approach not only achieves dimensionality reduction but also explores the optimal cluster centroids through the application of the PSO algorithm. Furthermore, both within-cluster variance and maximum entropy are combined as the objective during the clustering process. To evaluate the performance of the proposed method, a case study involving transaction data clustering is undertaken. The empirical findings demonstrate the superiority of the proposed method over existing ones when applied to sparse binary data, as evidenced by improved fitness values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tan, P.-N., Steinbach, M.S., Karpatne, A., Kumar, V.: Introduction to Data Mining. Pearson Education Inc, NY (2019)

    Google Scholar 

  2. James, B.T., Luczak, B.B., Girgis, H.Z.: MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res. 46(14) (2018)

    Google Scholar 

  3. Kakushadze, Z., Yu, W.: K-means and cluster models for cancer signatures. Biomol. Detect. Quantification 13, 7–31 (2017)

    Article  Google Scholar 

  4. Mungle, S., Benyoucef, L., Son, Y.J., Tiwari, M.K.: A fuzzy clustering-based genetic algorithm approach for time-cost-quality trade-off problems: a case study of highway construction project. Eng. Appl. Artif. Intell. 26, 1953–1966 (2013)

    Article  Google Scholar 

  5. Kuo, R.J., Potti, Y., Zulvia, F.E.: Application of metaheuristic based fuzzy k-modes algorithm to supplier clustering. Comput. Ind. Eng. 120, 298–307 (2018)

    Article  Google Scholar 

  6. Li, H.-J., Bu, Z., Wang, Z., Cao, J.: Dynamical clustering in electronic commerce systems via optimization and leadership expansion. IEEE Trans. Industr. Inf. 16, 5327–5334 (2020)

    Article  Google Scholar 

  7. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  8. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA (1967)

    Google Scholar 

  9. Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. In: Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD), pp. 1–8 (1997b)

    Google Scholar 

  10. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)

    Article  Google Scholar 

  11. Bezdek, J.C., Ehrlich, R., Full, W.E.: FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

  12. Huang, J.Z., Ng, M.K.: A fuzzy k-modes algorithm for clustering categori-cal data. IEEE Trans. Fuzzy Syst. 7, 446–452 (1999)

    Article  Google Scholar 

  13. Huang, Z.: Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the First Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 21–34 (1997a))

    Google Scholar 

  14. Ji, J., Pang, W., Zhou, C., Han, X., Wang, Z.: A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowl.-Based Syst. 30, 129–135 (2012)

    Article  Google Scholar 

  15. Katz, S.M.: Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Trans. Acoust. Speech Signal Process. 35, 400–401 (1987)

    Article  Google Scholar 

  16. Contu, G., Frigau, L.: Comparison of cluster analysis approaches for binary data. In: Mola, F., Conversano, C., Vichi, M. (eds.) Classification, (Big) Data Analysis and Statistical Learning. SCDAKO, pp. 155–162. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55708-3_17

    Chapter  Google Scholar 

  17. Pratap, R., Kulkarni, R., Sohony, I.: Efficient dimensionality reduction for sparse binary data. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 152–157 (2018)

    Google Scholar 

  18. Maaten, L.V.D., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  19. Śmieja, M., Nakoneczny, S., Tabor, J.: Fast entropy clustering of sparse high dimensional binary data. In: Proceedings of 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2397–2404 (2016)

    Google Scholar 

  20. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  21. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. IV, 1, pp. 942–1948 (1995)

    Google Scholar 

  22. Clerc, M.: Particle swarm optimization. International Scientific and Technical Encyclopedia, (2006)

    Google Scholar 

  23. Soliman, O.S., Rassem, A.: A bio inspired estimation of distribution algorithm for global optimization. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7665, pp. 645–652. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34487-9_78

    Chapter  Google Scholar 

  24. Nguyen, T.P.Q., Kuo, R.J.: Automatic fuzzy clustering using non-dominated sorting particle swarm optimization algorithm for categorical data. IEEE Access 7, 99721–99734 (2019)

    Article  Google Scholar 

  25. Kuo, R.J., Zheng, Y., Quyên, N.Å.T.K.: Metaheuristic-based possibilistic fuzzy k-modes algorithms for categorical data clustering. Inf. Sci. 557, 1–15 (2021)

    Article  MathSciNet  Google Scholar 

  26. Daqing, C.: Online Retail. UCI Machine Learning Repository (2015). https://doi.org/10.24432/C5BW33

Download references

Acknowledgments

This study is financially supported by National Science and Technology Council of Taiwanese government under contract number: MOST 111–2221-E-011–076-MY3. The support is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Kuo .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuo, R.J., Fan, CJ., Nguyen, T.P.Q. (2024). A Sparse Binary Data Clustering Method for Transaction Data. In: Fujita, H., Cimler, R., Hernandez-Matamoros, A., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Theory and Applications. IEA/AIE 2024. Lecture Notes in Computer Science(), vol 14748. Springer, Singapore. https://doi.org/10.1007/978-981-97-4677-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4677-4_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4676-7

  • Online ISBN: 978-981-97-4677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics