Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Known-Key Attack on GIFT-64 and GIFT-64[\(g_0^c\)] Based on Correlation Matrices

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14895))

Included in the following conference series:

  • 320 Accesses

Abstract

Block ciphers are often used as building blocks for one-way compression functions, which in turn, can be employed to construct hash functions. Two well-known important methods in the design of one-way compression function from block ciphers are the Davies-Meyer compression and the Myagushi-Preneel compression. To verify the security of such a construction, it is necessary to evaluate the robustness of the underlying block cipher against, e.g., the secret key, which is the so-called known-key model. In this paper, we evaluate the security of the lightweight block cipher GIFT-64 in the known-key setting, when used as a building block of hash functions. We significantly improve the known-key distinguisher to full GIFT-64. The distinguisher is composed of truncated differentials over 13 rounds and a meet-in-the-middle distinguisher over 15 rounds. We leverage a relationship between truncated differentials and multiple linear approximations cryptanalysis. It allows us to transfer searching for truncated differentials to constructing multiple linear approximations, resulting in the improved probability of truncated differentials.

To collect the related linear approximations as many as possible, we use a relatively low-dimensional binary correlation matrix where the hamming weight of the linear mask for the internal state can reach 8. Employing this correlation matrix, we precisely calculate all linear approximations that satisfy the specific conditions. To obtain a full-round distinguisher, these approximations are pre-filtered by a meet-in-the-middle distinguisher via a new matching method called rotational recombination. We would like to highlight that our distinguisher can apply successfully to the full-round GIFT-64 with a time complexity of \(2^{60}\). Furthermore, we implement the attack successfully on a variant of GIFT-64, GIFT-64[\(g_0^c\)], proposed at Eurocrypt 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://csrc.nist.gov/projects/lightweight-cryptography.

References

  1. Adomnicai, A., Najm, Z., Peyrin, T.: Fixslicing: a new GIFT representation fast constant-time implementations of GIFT and GIFT-COFB on ARM Cortex-M. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 402–427 (2020). https://doi.org/10.13154/tches.v2020.i3.402-427

  2. Banik, S., et al.: GIFT-COFB. IACR Cryptology ePrint Archive, p. 738 (2020). https://eprint.iacr.org/2020/738

  3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

    Chapter  Google Scholar 

  4. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 388–404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_24

    Chapter  Google Scholar 

  5. Blondeau, C., Peyrin, T., Wang, L.: Known-key distinguisher on full PRESENT. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 455–474. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_22

    Chapter  Google Scholar 

  6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  7. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_18

    Chapter  Google Scholar 

  8. Dong, X., Guo, J., Li, S., Pham, P.: Triangulating rebound attack on AES-like hashing. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 94–124. Springer, Santa Barbara (2022). https://doi.org/10.1007/978-3-031-15802-5_4

  9. Flórez-Gutiérrez, A., Naya-Plasencia, M.: Improving key-recovery in linear attacks: application to 28-round PRESENT. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 221–249. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_9

    Chapter  Google Scholar 

  10. Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_11

    Chapter  Google Scholar 

  11. Hao, Y., Meier, W.: Truncated differential based known-key attacks on round-reduced SIMON. Des. Codes Cryptogr. 2017(83), 467–492 (2017). https://doi.org/10.1007/s10623-016-0242-3

    Article  MathSciNet  Google Scholar 

  12. Ji, F., Zhang, W., Zhou, C., Ding, T.: Improved (related-key) differential cryptanalysis on GIFT. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 198–228. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_8

    Chapter  Google Scholar 

  13. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_19

    Chapter  Google Scholar 

  14. Liu, Y., Sasaki, Yu.: Related-key boomerang attacks on GIFT with automated trail search including BCT effect. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 555–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_30

    Chapter  Google Scholar 

  15. Sasaki, Yu.: Meet-in-the-middle preimage attacks on AES hashing modes and an application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_22

    Chapter  Google Scholar 

  16. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008). https://doi.org/10.1007/s00145-007-9013-7

    Article  MathSciNet  Google Scholar 

  17. Sun, L., Preneel, B., Wang, W., Wang, M.: A greater GIFT: strengthening GIFT against statistical cryptanalysis. Cryptology Accepted by Eurocrypt, p. 243 (2022). https://eprint.iacr.org/2022/243

  18. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1), 269–315 (2021). https://doi.org/10.46586/tosc.v2021.i1.269-315

  19. Sun, L., Wang, W., Wang, M.: Improved attacks on GIFT-64. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 246–265. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_12

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for their helpful comments and suggestions. This paper is supported by the National Natural Science Foundation of China (Grants No. 62272282, 62071280) and the Natural Science Foundation of Shandong Province (Grants No. ZR2020KF011, ZR2020MF056). The third author is partially supported by the Slovenian Research Agency (Projects J1-4084, J1-2451 and N1-0159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X., Zhang, W., Rodríguez, R., Liu, H. (2024). Known-Key Attack on GIFT-64 and GIFT-64[\(g_0^c\)] Based on Correlation Matrices. In: Zhu, T., Li, Y. (eds) Information Security and Privacy. ACISP 2024. Lecture Notes in Computer Science, vol 14895. Springer, Singapore. https://doi.org/10.1007/978-981-97-5025-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5025-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5024-5

  • Online ISBN: 978-981-97-5025-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics