Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identification of Potential SARS-CoV-2 Main Protease Inhibitors Using Drug Repurposing and Molecular Modeling

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2024)

Abstract

Structure-based virtual screening of a molecular library of bioactive compounds was carried out to identify potential inhibitors against SARS-CoV-2 main protease (Mpro), an enzyme critically important for mediating viral replication and transcription. The binding affinity of these compounds to the catalytic site of the enzyme was assessed using molecular docking and molecular dynamics simulations, resulting in six molecules that exhibited high binding affinity to the SARS-CoV-2 Mpro. This is evidenced by the low values of binding free energy of the ligand/Mpro complexes comparable with those predicted using the identical computational protocols for the potent non-covalent SARS-CoV-2 Mpro inhibitor. Based on the data obtained, the identified compounds are supposed to have good therapeutic potential for inhibiting the catalytic activity of the enzyme and form promising basic structures for the development of new effective drugs against SARS-CoV-2 Mpro, an attractive target for anti-COVID-19 agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

References

  1. Lu, R., et al.: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 395, 565–574 (2020). https://doi.org/10.1016/S0140-6736(20)30251-8

  2. Chan, J.F.-W., et al.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 395, 514–523 (2020). https://doi.org/10.1016/S0140-6736(20)30154-9

  3. Yan, F., Gao, F.: An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. 2021. Comput. Struct. Biotechnol. J. 19, 4868–4883. https://doi.org/10.1016/j.csbj.2021.08.036

  4. Ullrich, S., Nitsche, C.: The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett. 30. 127377 (2020). https://doi.org/10.1016/j.bmcl.2020.127377

  5. Katre, S.G., et al.: Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro). Fut. J. Pharm. Sci. 8 (2022). Article no. 36. https://doi.org/10.1186/s43094-022-00423-7

  6. Xia, S., et al.: Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant. Cell Res. 32, 404–406 (2022). https://doi.org/10.1038/s41422-022-00617-x

  7. Xia, S., et al.: Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020. V. 30. P. 343–355. https://doi.org/10.1038/s41422-020-0305-x

  8. Tao, K., Tzou, P.L., Nouhin, J., Bonilla, H., Jagannathan, P., Shafer, R.W.: SARS-CoV-2 antiviral therapy. Clin. Microbiol. Rev. 34(4), e0010921 (2022). https://doi.org/10.1128/CMR.00109-21

  9. Niknam Z., et al.: Potential therapeutic options for COVID-19: an update on current evidence. Eur. J. Med. Res. 27 (2022). Article no. 6. https://doi.org/10.1186/s40001-021-00626-3

  10. Dai, W., et al.: Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368(6497), 1331–1335 (2020). https://doi.org/10.1126/science.abb4489

    Article  Google Scholar 

  11. Shang, W., et al.: In vitro and in vivo evaluation of the main protease inhibitor FB2001 against SARS-CoV-2. Antiviral Res. 208, 105450 (2022). https://doi.org/10.1016/j.antiviral.2022.105450

  12. Zhang, Y., Ye, T., Xi, H., Juhas, M., Li, J.: Deep learning driven drug discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2. Front. Microbiol. (2021). https://doi.org/10.3389/fmicb.2021.739684

    Article  Google Scholar 

  13. Pillaiyar, T., Manickam, M., Namasivayam, V.M., Hayashi, Y., Jung, S.H.: An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem. 59, 6595–6628 (2016). doi:https://doi.org/10.1021/acs.jmedchem.5b01461

  14. Chen, Y., Liu, Q., Guo, D.: Coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92(4), 418–423 (2020). https://doi.org/10.1002/jmv.25681

  15. Andrianov, A.M., Shuldau, M.A., Furs, K.V., Yushkevich, A.M., Tuzikov, A.V.: AI-driven de novo design and molecular modeling for discovery of small-molecule compounds as potential drug candidates targeting SARS-CoV-2 Main Protease. Int. J. Mol. Sci. 24(9), 8083 (2023). https://doi.org/10.3390/ijms24098083

  16. Dalby, A., et al.: Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comp. Sc. 32(3), 244–255 (1992). https://doi.org/10.1021/ci00007a012

    Article  Google Scholar 

  17. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46, D1074–D1082 (2017). https://doi.org/10.1093/nar/gkx1037

  18. Sterling, T., Irwin, J.J.: ZINC 15 – Ligand discovery for everyone. J. Chem. Inf. Model. 55(11), 2324–2337 (2015). https://doi.org/10.1021/acs.jcim.5b00559

    Article  Google Scholar 

  19. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334

  20. Wójcikowski, M., Ballester, P., Siedlecki, P.: Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 7, 46710 (2017). https://doi.org/10.1038/srep46710

    Article  Google Scholar 

  21. Durrant, J.D., McCammon, J.A.: NNScore 2.0: a neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 51(11), 2897–2903 (2011). https://doi.org/10.1021/ci2003889

  22. Palacio-Rodríguez, K., Lans, I., Cavasotto, C.N., Cossio, P.: Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep. 9(1) (2019). Article no. 1. https://doi.org/10.1038/s41598-019-41594-3

  23. Case, D.A., et al.: AMBER 2020. University of California (2020)

    Google Scholar 

  24. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983). https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  25. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977). https://doi.org/10.1016/0021-9991(77)90098-5

    Article  Google Scholar 

  26. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995). https://doi.org/10.1063/1.470117

  27. Durrant, J.D., McCammon, J.A.: BINANA: a novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 29(6), 888–893 (2011). https://doi.org/10.1016/j.jmgm.2011.01.004

    Article  Google Scholar 

  28. Genheden, S., Ryde, U.: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinity. Expert Opin. Drug Discov. 10(5), 449–461 (2015). https://doi.org/10.1517/17460441.2015.1032936

  29. Zhang, C.H., et al.: Potent noncovalent inhibitors of the Main Protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations. ACS Cent Sci. 7(3), 467–475 (2021). MEDLINE | ID: covidwho-1132027

    Google Scholar 

  30. Shen, C., et al.: Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions. Brief. Bioinf. 22(1), 497–514 (2021). https://doi.org/10.1093/bib/bbz173

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Belarusian Republican Foundation for Fundamental Research (grant Ф24КИ-001) and the Alliance of National and International Science Organizations (grant ANSO-CR-PP-2021-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Furs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrianov, A.M. et al. (2024). Identification of Potential SARS-CoV-2 Main Protease Inhibitors Using Drug Repurposing and Molecular Modeling. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14954. Springer, Singapore. https://doi.org/10.1007/978-981-97-5128-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5128-0_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5127-3

  • Online ISBN: 978-981-97-5128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics