Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance Enhancement Strategies for Node Classification Based on Graph Community Structure Recognition

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14884))

  • 350 Accesses

Abstract

For current Transformers, although current learnable graph community structures help enhance the information capture of low-degree nodes, these approaches primarily aim to improve the Transformer model rather than deeply exploring the underlying relationships between nodes. As a result, they face limitations in enhancing the role of low-degree nodes within the community. To address these limitations, this paper introduces two innovative methods: Spectral-Mean Synergistic Clustering (SMSC) and the Semantic Proximity Evaluation Mechanism (SPEM). SMSC improves the construction of graph communities, enabling more accurate classification of nodes into different communities. SPEM evaluates the potential value and similarity of low-degree nodes within the same community to establish better connections. The proposed algorithm demonstrates significant performance improvements in node classification. Compared to the baseline model, it achieves a 1.64% improvement on the Cora dataset and a 4.05% improvement on the much larger WikiCS dataset. Experimental results verify that combining spectral-mean co-optimization with semantic proximity assessment significantly enhances the processing of low-degree node information, especially in larger-scale datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, H., Ma, S., Zhang, D., Deng, Z.H., Wei, F.: Are more layers beneficial to graph transformers? arXiv preprint arXiv:2303.00579 (2023)

  2. Ma, L., Lin, C., Lim, D., et al.: Graph inductive biases in transformers without message passing. In: International Conference on Machine Learning, pp. 23321–23337. PMLR (2023)

    Google Scholar 

  3. Wu, Q., Zhao, W., Yang, C., et al.: Simplifying and empowering transformers for large-graph representations. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  4. Hoang, V.T., Jeon, H.J., You, E.S., Yoon, Y., Jung, S., Lee, O.J.: Graph representation learning and its applications: a survey. Sensors 23(8), 4168 (2023)

    Article  Google Scholar 

  5. Hoang, V.T., Lee, O., et al.: Mitigating degree biases in message passing mechanism by utilizing community structures. arXiv preprint arXiv:2312.16788 (2023)

  6. Qiu, M., Guo, M., et al.: Loop scheduling and bank type assignment for heterogeneous multi-bank memory. J. Parallel Distrib. Comput. 69(6), 546–558 (2009)

    Article  Google Scholar 

  7. Huang, H., Chaturvedi, V., et al.: Throughput maximization for periodic real-time systems under the maximal temperature constraint. ACM Trans. Embed. Comput. Syst. 13(2s), 1–22 (2014)

    Article  Google Scholar 

  8. Qiu, M., Li, J.: Real-Time Embedded Systems: Optimization, Synthesis, and Networking. CRC Press (2011)

    Google Scholar 

  9. Qiu, M., Dai, W., Vasilakos, A.: Loop parallelism maximization for multimedia data processing in mobile vehicular clouds. IEEE Trans. Cloud Comput. 7(1), 250–258 (2016)

    Article  Google Scholar 

  10. Song, Y., Li, Y., et al.: Retraining strategy-based domain adaption network for intelligent fault diagnosis. IEEE Trans. Industr. Inf. 16(9), 6163–6171 (2019)

    Article  Google Scholar 

  11. Qiu, M., Zhang, K., Huang, M.: Usability in mobile interface browsing. Web Intell. Agent Syst. Intl. J. 4(1), 43–59 (2006)

    Google Scholar 

  12. Wei, X., Guo, H., et al.: Reliable data collection techniques in underwater wireless sensor networks: a survey. IEEE Commun. Surv. Tutorials 24(1), 404–431 (2021)

    Article  MathSciNet  Google Scholar 

  13. Qiu, M., Qiu, H.: Review on image processing based adversarial example defenses in computer vision. In: IEEE 6th BigDataSecurity (2020)

    Google Scholar 

  14. Zeng, Y., Qiu, H., et al.: A data augmentation-based defense method against adversarial attacks in neural networks. In: ICA3PP 2020, New York City (2020)

    Google Scholar 

  15. Qiu, H., Zheng, Q., Zhang, T., et al.: Toward secure and efficient deep learning inference in dependable IoT systems. IEEE Internet Things J. 8(5), 3180–3188 (2020)

    Article  Google Scholar 

  16. Zhang, Y., Qiu, M., Gao, H.: Communication-efficient stochastic gradient descent ascent with momentum algorithms. In: IJCAI (2023)

    Google Scholar 

  17. Ling, C., Jiang, J., et al.: Deep graph representation learning and optimization for influence maximization. In: ICML (2023)

    Google Scholar 

  18. Zhang, Y., Qiu, M., et al.: Health-CPS: healthcare cyber-physical system assisted by cloud and big data. IEEE Syst. J. 11(1), 88–95 (2015)

    Article  Google Scholar 

  19. Qiu, M., Gao, W., et al.: Energy efficient security algorithm for power grid wide area monitoring system. IEEE Trans. Smart Grid 2(4), 715–723 (2011)

    Article  Google Scholar 

  20. Zeng, Y., Pan, M., et al.: Narcissus: a practical clean-label backdoor attack with limited information. In: ACM CCS (2023)

    Google Scholar 

  21. Gai, K., Zhang, Y., Qiu, M., Thuraisingham, B.: Blockchain-enabled service optimizations in supply chain digital twin. IEEE Trans. Serv. Comput. (2022)

    Google Scholar 

  22. Li, C., Qiu, M.: Reinforcement Learning for Cyber-Physical Systems: With Cybersecurity Case Studies. CRC Press (2019)

    Google Scholar 

  23. Gai, K., Xu, K., Lu, Z., Qiu, M., Zhu, L.: Fusion of cognitive wireless networks and edge computing. IEEE Wireless Commun. 26(3), 69–75 (2019)

    Article  Google Scholar 

  24. Y. Cui, K. Cao, et al.: Client scheduling and resource management for efficient training in heterogeneous IoT-edge federated learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2021)

    Google Scholar 

  25. Qiu, H., Qiu, M., Lu, R.: Secure V2X communication network based on intelligent PKI and edge computing. IEEE Netw. 34(2), 172–178 (2019)

    Article  Google Scholar 

  26. Zhang, Y., Yu, X., et al., Every document owns its structure: inductive text classification via graph neural networks. arXiv preprint arXiv:2004.13826 (2020)

  27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  28. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.: Graph attention networks. Stat 1050(20), 10–48550 (2017)

    Google Scholar 

  29. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  30. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  31. Lee, N., Hyun, D., Lee, J., Park, C.: Relational self-supervised learning on graphs. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 1054–1063 (2022)

    Google Scholar 

  32. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020)

  33. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

  34. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs. arXiv preprint arXiv:2012.09699 (2020)

  35. Kreuzer, D., Beaini, D., et al.: Rethinking graph transformers with spectral attention. Adv. Neural Inf. Proc. Sys. 34, 21618–21629 (2021)

    Google Scholar 

  36. Chen, D., O’Bray, L., Borgwardt, K.: Structure-aware transformer for graph representation learning. In: International Conference on Machine Learning, pp. 3469–3489. PMLR (2022)

    Google Scholar 

  37. Ikotun, A.M., et al.: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 622, 178–210 (2023)

    Article  Google Scholar 

  38. Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph neural networks for graph pooling. In: International Conference on Machine Learning, pp. 874–883. PMLR (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Hu, W., Lu, J., Liu, F., Hu, M., Han, Y. (2024). Performance Enhancement Strategies for Node Classification Based on Graph Community Structure Recognition. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14884. Springer, Singapore. https://doi.org/10.1007/978-981-97-5492-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5492-2_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5491-5

  • Online ISBN: 978-981-97-5492-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics