Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MANE: A Multi-cascade Adversarial Network Embedding Model forĀ Anchor Link Prediction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14855))

Included in the following conference series:

  • 553 Accesses

Abstract

Anchor link prediction plays a crucial role in social network analysis as it is a fundamental task. Current studies mainly rely on feature embedding of user-generated content or network structure to create latent representations. These representations are then used to determine user correspondences by mapping users between different network representation spaces. However, most studies still face some challenges such as independent representation spaces, weak discrimination of embedded representations, etc. In this paper, we propose a Multi-cascade Adversarial Network Embedding (MANE) model to tackle these challenges. MANE learns multiple representations from different cascade networks for each user, making users distinguishable in the representation space. Furthermore, an adversarial network is integrated with a mapping function to output a high-quality collection of possible anchor links for correspondence matching. Extensive experiments on real-world social network datasets demonstrate that our method can achieve the expected performance, especially in improving the top-1 precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, H., Yin, H., Sun, X., Chen, T.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: SIGKDD, pp. 1503ā€“1511 (2020)

    Google ScholarĀ 

  2. Cheng, A., et al.: Deep active learning for anchor user prediction. In: IJCAI, pp. 2151ā€“2157 (2019)

    Google ScholarĀ 

  3. Chu, X., Fan, X., Yao, D., Zhu, Z., Huang, J., Bi, J.: Cross-network embedding for multi-network alignment. In: WWW, pp. 273ā€“284 (2019)

    Google ScholarĀ 

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)

    Google ScholarĀ 

  5. Du, X., Yan, J., Zha, H.: Joint link prediction and network alignment via cross-graph embedding. In: IJCAI, pp. 2251ā€“2257 (2019)

    Google ScholarĀ 

  6. Goodfellow, I.J., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google ScholarĀ 

  7. Heimann, M., Shen, H., Safavi, T., Koutra, D.: REGAL: representation learning-based graph alignment. In: CIKM, pp. 117ā€“126 (2018)

    Google ScholarĀ 

  8. Li, C., et al.: Adversarial learning for weakly-supervised social network alignment. In: AAAI, pp. 996ā€“1003 (2019)

    Google ScholarĀ 

  9. Li, X., Shang, Y., Cao, Y., Li, Y., Tan, J.: Type-aware anchor link prediction across heterogeneous networks based on graph attention network. In: AAAI (2020)

    Google ScholarĀ 

  10. Lim, B.H., Lu, D., Chen, T., Kan, M.: #mytweet via instagram: exploring user behaviour across multiple social networks. In: ASONAM, pp. 113ā€“120 (2015)

    Google ScholarĀ 

  11. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: IJCAI (2016)

    Google ScholarĀ 

  12. Nie, Y., Jia, Y., Li, S., Zhu, X., Li, A., Zhou, B.: Identifying users across social networks based on dynamic core interests. Neurocomputing 210, 107ā€“115 (2016)

    ArticleĀ  Google ScholarĀ 

  13. Ren, J., Zhou, Y., Jin, R., Zhang, Z., Dou, D., Wang, P.: Dual adversarial learning based network alignment. In: Wang, J., Shim, K., Wu, X. (eds.) ICDM (2019)

    Google ScholarĀ 

  14. Ribeiro, L.F.R., Saverese, P.H.P., Figueiredo, D.R.: struc2vec: Learning node representations from structural identity. In: SIGKDD, pp. 385ā€“394 (2017)

    Google ScholarĀ 

  15. Riederer, C.J., Kim, Y., Chaintreau, A., Korula, N., Lattanzi, S.: Linking users across domains with location data: Theory and validation. In: WWW (2016)

    Google ScholarĀ 

  16. Shu, K., Wang, S., Tang, J., Zafarani, R., Liu, H.: User identity linkage across online social networks: A review. SIGKDD Explorations 18(2), 5ā€“17 (2016)

    ArticleĀ  Google ScholarĀ 

  17. Tan, S., Guan, Z., Cai, D., Qin, X., Bu, J., Chen, C.: Mapping users across networks by manifold alignment on hypergraph. In: AAAI (2014)

    Google ScholarĀ 

  18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067ā€“1077 (2015)

    Google ScholarĀ 

  19. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: Hierarchical dirichlet processes. In: NeurIPS, pp. 1385ā€“1392 (2004)

    Google ScholarĀ 

  20. Wang, Y., Feng, C., Chen, L.: User identity linkage across social networks via linked heterogeneous network embedding. WWW 22(6), 2611ā€“2632 (2019)

    Google ScholarĀ 

  21. Zafarani, R., Liu, H.: Connecting users across social media sites: a behavioral-modeling approach. In: SIGKDD, pp. 41ā€“49 (2013)

    Google ScholarĀ 

  22. Zafarani, R., Tang, L., Liu, H.: User identification across social media. TKDD 10(2), 16:1ā€“16:30 (2015)

    Google ScholarĀ 

  23. Zhang, J., Yu, P.S.: PCT: partial co-alignment of social networks. In: WWW (2016)

    Google ScholarĀ 

  24. Zhang, J., Chen, B., Wang, X., Chen, H., and, C.L.: Mego2vec: Embedding matched ego networks for user alignment across social networks. In: CIKM (2018)

    Google ScholarĀ 

  25. Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: SIGKDD, pp. 1345ā€“1354 (2016)

    Google ScholarĀ 

  26. Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: a deep learning approach for user identity linkage. In: INFOCOM, pp. 1313ā€“1321 (2018)

    Google ScholarĀ 

  27. Zhou, J., Fan, J.: Translink: user identity linkage across heterogeneous social networks via translating embeddings. In: INFOCOM (2019)

    Google ScholarĀ 

  28. Zhou, X., Liang, X., Zhang, H., Ma, Y.: Cross-platform identification of anonymous identical users in multiple social media networks. TKDE 28(2), 411ā€“424 (2016)

    Google ScholarĀ 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China under Grant No. 61972272, the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No. 21KJA520008, Qinlan ProjectĀ of Jiangsu Province of China, and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingya Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, J. (2024). MANE: A Multi-cascade Adversarial Network Embedding Model forĀ Anchor Link Prediction. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14855. Springer, Singapore. https://doi.org/10.1007/978-981-97-5572-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5572-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5571-4

  • Online ISBN: 978-981-97-5572-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics