Abstract
Anchor link prediction plays a crucial role in social network analysis as it is a fundamental task. Current studies mainly rely on feature embedding of user-generated content or network structure to create latent representations. These representations are then used to determine user correspondences by mapping users between different network representation spaces. However, most studies still face some challenges such as independent representation spaces, weak discrimination of embedded representations, etc. In this paper, we propose a Multi-cascade Adversarial Network Embedding (MANE) model to tackle these challenges. MANE learns multiple representations from different cascade networks for each user, making users distinguishable in the representation space. Furthermore, an adversarial network is integrated with a mapping function to output a high-quality collection of possible anchor links for correspondence matching. Extensive experiments on real-world social network datasets demonstrate that our method can achieve the expected performance, especially in improving the top-1 precision and recall.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, H., Yin, H., Sun, X., Chen, T.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: SIGKDD, pp. 1503ā1511 (2020)
Cheng, A., et al.: Deep active learning for anchor user prediction. In: IJCAI, pp. 2151ā2157 (2019)
Chu, X., Fan, X., Yao, D., Zhu, Z., Huang, J., Bi, J.: Cross-network embedding for multi-network alignment. In: WWW, pp. 273ā284 (2019)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)
Du, X., Yan, J., Zha, H.: Joint link prediction and network alignment via cross-graph embedding. In: IJCAI, pp. 2251ā2257 (2019)
Goodfellow, I.J., et al.: Generative adversarial nets. In: NeurIPS (2014)
Heimann, M., Shen, H., Safavi, T., Koutra, D.: REGAL: representation learning-based graph alignment. In: CIKM, pp. 117ā126 (2018)
Li, C., et al.: Adversarial learning for weakly-supervised social network alignment. In: AAAI, pp. 996ā1003 (2019)
Li, X., Shang, Y., Cao, Y., Li, Y., Tan, J.: Type-aware anchor link prediction across heterogeneous networks based on graph attention network. In: AAAI (2020)
Lim, B.H., Lu, D., Chen, T., Kan, M.: #mytweet via instagram: exploring user behaviour across multiple social networks. In: ASONAM, pp. 113ā120 (2015)
Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: IJCAI (2016)
Nie, Y., Jia, Y., Li, S., Zhu, X., Li, A., Zhou, B.: Identifying users across social networks based on dynamic core interests. Neurocomputing 210, 107ā115 (2016)
Ren, J., Zhou, Y., Jin, R., Zhang, Z., Dou, D., Wang, P.: Dual adversarial learning based network alignment. In: Wang, J., Shim, K., Wu, X. (eds.) ICDM (2019)
Ribeiro, L.F.R., Saverese, P.H.P., Figueiredo, D.R.: struc2vec: Learning node representations from structural identity. In: SIGKDD, pp. 385ā394 (2017)
Riederer, C.J., Kim, Y., Chaintreau, A., Korula, N., Lattanzi, S.: Linking users across domains with location data: Theory and validation. In: WWW (2016)
Shu, K., Wang, S., Tang, J., Zafarani, R., Liu, H.: User identity linkage across online social networks: A review. SIGKDD Explorations 18(2), 5ā17 (2016)
Tan, S., Guan, Z., Cai, D., Qin, X., Bu, J., Chen, C.: Mapping users across networks by manifold alignment on hypergraph. In: AAAI (2014)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067ā1077 (2015)
Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: Hierarchical dirichlet processes. In: NeurIPS, pp. 1385ā1392 (2004)
Wang, Y., Feng, C., Chen, L.: User identity linkage across social networks via linked heterogeneous network embedding. WWW 22(6), 2611ā2632 (2019)
Zafarani, R., Liu, H.: Connecting users across social media sites: a behavioral-modeling approach. In: SIGKDD, pp. 41ā49 (2013)
Zafarani, R., Tang, L., Liu, H.: User identification across social media. TKDD 10(2), 16:1ā16:30 (2015)
Zhang, J., Yu, P.S.: PCT: partial co-alignment of social networks. In: WWW (2016)
Zhang, J., Chen, B., Wang, X., Chen, H., and, C.L.: Mego2vec: Embedding matched ego networks for user alignment across social networks. In: CIKM (2018)
Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: SIGKDD, pp. 1345ā1354 (2016)
Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: a deep learning approach for user identity linkage. In: INFOCOM, pp. 1313ā1321 (2018)
Zhou, J., Fan, J.: Translink: user identity linkage across heterogeneous social networks via translating embeddings. In: INFOCOM (2019)
Zhou, X., Liang, X., Zhang, H., Ma, Y.: Cross-platform identification of anonymous identical users in multiple social media networks. TKDE 28(2), 411ā424 (2016)
Acknowledgement
This work was partially supported by the National Natural Science Foundation of China under Grant No. 61972272, the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No. 21KJA520008, Qinlan ProjectĀ of Jiangsu Province of China, and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhou, J. (2024). MANE: A Multi-cascade Adversarial Network Embedding Model forĀ Anchor Link Prediction. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14855. Springer, Singapore. https://doi.org/10.1007/978-981-97-5572-1_11
Download citation
DOI: https://doi.org/10.1007/978-981-97-5572-1_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5571-4
Online ISBN: 978-981-97-5572-1
eBook Packages: Computer ScienceComputer Science (R0)