Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TransGAD: A Transformer-Based Autoencoder for Graph Anomaly Detection

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14855))

Included in the following conference series:

  • 807 Accesses

Abstract

Graph anomaly detection, aimed at identifying anomalous patterns that significantly differ from other nodes, has drawn widespread attention in recent years. Due to the complex topological structures and attribute information inherent in graphs, conventional methods often struggle to effectively identify anomalies. Deep anomaly detection methods based on Graph Neural Networks (GNNs) have achieved significant success. However, they face the challenge of not only obtaining limited neighborhood information but over-smoothing. Over-smoothing is the phenomenon where the representations of nodes gradually become similar and flattened across multiple convolutional layers, thereby limiting the comprehensive learning of neighborhood information. Therefore, we propose a novel anomaly detection framework, TransGAD, to address these challenges. Inspired by the Graph Transformer, we introduce a Transformer-based autoencoder. Treating each node as a sequence and its neighborhood as tokens in the sequence, this autoencoder captures both local and global information. We incorporate cosine positional encoding and masking strategy to obtain more informative node representations and leverage reconstruction error for improved anomaly detection. Experimental results on seven datasets demonstrate that our approach outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Branco, B., Abreu, P., Gomes, A.S., Almeida, M.S., Ascensão, J.T., Bizarro, P.: Interleaved sequence RNNs for fraud detection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 3101–3109 (2020)

    Google Scholar 

  2. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3438–3445 (2020)

    Google Scholar 

  3. Chen, J., Gao, K., Li, G., He, K.: Nagphormer: a tokenized graph transformer for node classification in large graphs. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  4. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019)

    Google Scholar 

  5. Duan, J., et al.: Graph anomaly detection via multi-scale contrastive learning networks with augmented view. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 7459–7467 (2023)

    Google Scholar 

  6. Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5685–5689. IEEE (2020)

    Google Scholar 

  7. Kim, H., Lee, B.S., Shin, W.Y., Lim, S.: Graph anomaly detection with graph neural networks: Current status and challenges. IEEE Access (2022)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., Tossou, P.: Rethinking graph transformers with spectral attention. Adv. Neural. Inf. Process. Syst. 34, 21618–21629 (2021)

    Google Scholar 

  10. Li, J., Dani, H., Hu, X., Liu, H.: Radar: residual analysis for anomaly detection in attributed networks. In: IJCAI, vol. 17, pp. 2152–2158 (2017)

    Google Scholar 

  11. Liu, K., et al.: Bond: benchmarking unsupervised outlier node detection on static attributed graphs. Adv. Neural. Inf. Process. Syst. 35, 27021–27035 (2022)

    Google Scholar 

  12. Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2378–2392 (2021)

    Article  MathSciNet  Google Scholar 

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  14. Luo, X., et al.: Comga: community-aware attributed graph anomaly detection. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 657–665 (2022)

    Google Scholar 

  15. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on Knowledge and Data Engineering (2021)

    Google Scholar 

  16. Miao, K., Shi, X., Zhang, W.A.: Attack signal estimation for intrusion detection in industrial control system. Comput. Security 96, 101926 (2020)

    Article  Google Scholar 

  17. Min, E., et al.: Transformer for graphs: an overview from architecture perspective. arXiv preprint arXiv:2202.08455 (2022)

  18. Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q., et al.: Anomalous: a joint modeling approach for anomaly detection on attributed networks. In: IJCAI, pp. 3513–3519 (2018)

    Google Scholar 

  19. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  20. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008)

    Google Scholar 

  21. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 817–826 (2009)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  24. Wu, N., Chen, F., Li, J., Huai, J., Zhou, B., Ramakrishnan, N., et al.: A nonparametric approach to uncovering connected anomalies by tree shaped priors. IEEE Trans. Knowl. Data Eng. 31(10), 1849–1862 (2018)

    Article  Google Scholar 

  25. Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez, J.E., Stoica, I.: Representing long-range context for graph neural networks with global attention. Adv. Neural. Inf. Process. Syst. 34, 13266–13279 (2021)

    Google Scholar 

  26. Xiong, R., et al.: On layer normalization in the transformer architecture. In: International Conference on Machine Learning, pp. 10524–10533. PMLR (2020)

    Google Scholar 

  27. Xu, H., et al.: Beyond outlier detection: Outlier interpretation by attention-guided triplet deviation network. In: Proceedings of the Web Conference 2021, pp. 1328–1339 (2021)

    Google Scholar 

  28. Ye, J., Akoglu, L.: Discovering opinion spammer groups by network footprints. In: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15. pp. 267–282. Springer (2015). https://doi.org/10.1007/978-3-319-23528-8_17

  29. Ying, C., et al.: Do transformers really perform badly for graph representation? Adv. Neural. Inf. Process. Syst. 34, 28877–28888 (2021)

    Google Scholar 

  30. Yuan, X., Zhou, N., Yu, S., Huang, H., Chen, Z., Xia, F.: Higher-order structure based anomaly detection on attributed networks. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 2691–2700. IEEE (2021)

    Google Scholar 

  31. Zhang, J., Wang, S., Chen, S.: Reconstruction enhanced multi-view contrastive learning for anomaly detection on attributed networks. arXiv preprint arXiv:2205.04816 (2022)

  32. Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Chen, Y.P.P.: Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Transactions on Knowledge and Data Engineering (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China(31400), and partly supported by Natural Science Foundation of Inner Mongolia Autonomous Region of China (2022LHMS06008), Key R&D and Transformation Plan of Qinghai Province(2022-QY-218), and University-Industry Collaborative Education Program(202312280037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nannan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Wu, N., Zhao, Y., Wang, W. (2024). TransGAD: A Transformer-Based Autoencoder for Graph Anomaly Detection. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14855. Springer, Singapore. https://doi.org/10.1007/978-981-97-5572-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5572-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5571-4

  • Online ISBN: 978-981-97-5572-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics