Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SPViM: Sparse Pyramid Video Representation Learning Framework for Fine-Grained Action Retrieval

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14866))

Included in the following conference series:

  • 422 Accesses

Abstract

Existing research has achieved remarkable success for video-based action understanding. However, current researches mainly focus on recognizing external actions at coarse-grained, with less attention paid to the fine-grained action understanding, thus impeding the precise localization and retrieval of internal content. To this end, we propose a Sparse Pyramid Video representation learning framework (SPViM), aiming to achieve frame-to-frame retrieval related to high-level action semantics. Firstly, an appearance encoder is introduced to construct independent visual descriptors for each input frame, where a shift window mechanism captures the underlying inter-frame nuances. Secondly, a temporal encoder containing the sparse self-attention and multi-granularity local context awareness mechanism were constructed to comprehensively describe the action hierarchy. Herein, inspired by the human brain cognitive process when retrieving specific content, we design a set of sparse constraints to guide self-attention gradually converge from global sparse to local dense centered on the target frame. Furthermore, we develop a Transformer-based temporal pyramid structure to integrate multi-scale spatio-temporal features, thereby generating comprehensive and discriminative video frame representations. Extensive experiments show that our fine-grained video retrieval method with SPViM architecture outperforms the state-of-the-art method on three challenging datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moon, W., Hyun, S., Park, S., Park, D., Heo, J.P.: Query-dependent video representation for moment retrieval and highlight detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23023– 23033 (2023)

    Google Scholar 

  2. Wang, C.H., Tseng, Y.C., Chiang, T.H., Chen, Y.A.: Learning multi-scale representations with single-stream network for video retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6165– 6175 (2023)

    Google Scholar 

  3. Chiang, T.H., Tseng, Y.C., Tseng, Y.C.: A multi-embedding neural model for incident video retrieval. Pattern Recogn. 130, 108807 (2022)

    Article  Google Scholar 

  4. Kordopatis-Zilos, G., Tzelepis, C., Papadopoulos, S., Kompatsiaris, I., Patras, I.: DNS: distill-and-select for efficient and accurate video indexing and retrieval. Int. J. Comput. Vision 130(10), 2385–2407 (2022)

    Article  Google Scholar 

  5. Hadji, I., Derpanis, K.G., Jepson, A.D.: Representation learning via global temporal alignment and cycle-consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11068–11077 (2021)

    Google Scholar 

  6. Rohrbach, M., et al.: Recognizing fine-grained and composite activities using hand-centric features and script data. Int. J. Comput. Vision 119, 346–373 (2016)

    Article  MathSciNet  Google Scholar 

  7. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  8. Haresh, S., et al.: Learning by aligning videos in time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5548–5558 (2021)

    Google Scholar 

  9. Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: Temporal cycleconsistency learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1801–1810 (2019)

    Google Scholar 

  10. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  11. Xu, R., Niu, L., Zhang, J., Zhang, L.: A proposal-based approach for activity image-to-video retrieval (2019)

    Google Scholar 

  12. Jiang, Y.G., Jiang, Y., Wang, J.: VCDB: a large-scale database for partial copy detection in videos. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part IV 13, pp. 357–371. Springer (2014)

    Google Scholar 

  13. Jing, W., Nie, X., Cui, C., Xi, X., Yang, G., Yin, Y.: Global-view hashing: harnessing global relations in near-duplicate video retrieval. World Wide Web 22, 771–789 (2019)

    Article  Google Scholar 

  14. Kordopatis-Zilos, G., Papadopoulos, S., Patras, I., Kompatsiaris, Y.: Nearduplicate video retrieval by aggregating intermediate CNN layers. In: MultiMedia Modeling: 23rd International Conference, MMM 2017, Reykjavik, Iceland, January 4–6, 2017, Proceedings, Part I 23, pp. 251–263. Springer (2017)

    Google Scholar 

  15. Yuan, L., et al.: Central similarity quantization for efficient image and video retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3083– 3092 (2020)

    Google Scholar 

  16. Jiang, Y.G., Wang, J.: Partial copy detection in videos: a benchmark and an evaluation of popular methods. IEEE Trans. Big Data 2(1), 32–42 (2016)

    Article  Google Scholar 

  17. Liu, H., Zhao, Q., Wang, H., Lv, P., Chen, Y.: An image-based near-duplicate video retrieval and localization using improved edit distance. Multimed. Tools Appl. 76, 24435–24456 (2017)

    Article  Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  20. Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S.: Time-contrastive networks: Self-supervised learning from video. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141 (2018). Author, F.: Article title. Journal 2(5), 99–110 (2016)

    Google Scholar 

  21. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a largescale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE, New York (2009)

    Google Scholar 

  22. Zhou, J., Wang, P., Wang, F., Liu, Q., Li, H., Jin, R.: Elsa: enhanced local selfattention for vision transformer. arXiv preprint arXiv:2112.12786 (2021)

  23. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International conference on machine learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  24. Chen, M., Wei, F., Li, C., Cai, D.: Frame-wise action representations for long videos via sequence contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13801–13810 (2022)

    Google Scholar 

  25. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 527–544. Springer (2016)

    Google Scholar 

  26. Liu, W., Tekin, B., Coskun, H., Vineet, V., Fua, P., Pollefeys, M.: Learning to align sequential actions in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2181–2191 (2022)

    Google Scholar 

  27. Zhang, H., Liu, D., Zheng, Q., Su, B.: Modeling video as stochastic processes for fine-grained video representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2225–2234 (2023)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (62277035) and (62332017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Yang, C., Luan, H., Gai, W., Geng, W., Zheng, Y. (2024). SPViM: Sparse Pyramid Video Representation Learning Framework for Fine-Grained Action Retrieval. In: Huang, DS., Zhang, X., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14866. Springer, Singapore. https://doi.org/10.1007/978-981-97-5594-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5594-3_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5593-6

  • Online ISBN: 978-981-97-5594-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics